Citation: |
[1] |
Y. Aubry, Reed-Muller codes associated to projective algebraic varieties, in Coding Theory and Algebraic Geometry, Springer, Berlin, 1992, 4-17.doi: 10.1007/BFb0087988. |
[2] |
D. Bartoli, M. De Boeck, S. Fanali and L. Storme, On the functional codes defined by quadrics and Hermitian varieties, Des. Codes Crypt., 71 (2014), 21-46.doi: 10.1007/s10623-012-9712-4. |
[3] |
R. C. Bose, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements, Calcutta Math. Soc., Golden Jubilee Commemoration Volume, Part II, 1959, 341-356. |
[4] |
R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N,q)$, Canad. J. Math., 18 (1966), 1161-1182. |
[5] |
R. Calderbank and W. Kantor, The geometry of two weight codes, Bull. London Math. Soc., 18 (1986), 97-122.doi: 10.1112/blms/18.2.97. |
[6] |
J. P. Cherdieu and R. Rolland, On the number of points of some hypersurfaces in $\mathbb{F}_q^n$, Finite Fields Appl., 2 (1996), 214-224.doi: 10.1006/ffta.1996.0014. |
[7] |
F. Edoukou, Codes defined by forms of degree 2 on Hermitian surfaces and Sørensen's conjecture, Finite Fields Appl., 13 (2008), 616-627.doi: 10.1016/j.ffa.2006.07.001. |
[8] |
F. Edoukou, A. Hallex, F. Rodier and L. Storme, The small weight codewords of the functional codes associated to non-singular Hermitian varieties, Des. Codes Crypt., 56 (2010), 219-233.doi: 10.1007/s10623-010-9401-0. |
[9] | Intersection of two quadrics with no common hyperplane in $\mathbb{P}^n (\mathbb{F}_q )$, preprint, arXiv:0907.4556 |
[10] |
F. Edoukou, S. Ling and C. Xing, Structure of functional codes defined on non-degenerate Hermitian varieties, J. Combin. Theory Ser. A, 118 (2011), 2436-2444.doi: 10.1016/j.jcta.2011.05.006. |
[11] |
S. R. Ghorpade and G. Lachaud, Number of solutions of equations over finite fields and a conjecture of Lang and Weil, in Number Theory and Discrete Mathematics, Birkhäuser, Basel, 2002, 269-291. |
[12] |
A. Hallez and L. Storme, Functional codes arising from quadric intersections with Hermitian varieties, Finite Fields Appl., 16 (2010), 27-35.doi: 10.1016/j.ffa.2009.11.005. |
[13] |
S. H. Hansen, Error-correcting codes from higher dimensional varieties, Finite Fields Appl., 7 (2001), 530-552.doi: 10.1006/ffta.2001.0313. |
[14] |
K. Ireland and M. Rosen, A Cclassical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990.doi: 10.1007/978-1-4757-2103-4. |
[15] |
N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions, Springer-Verlag, New York, 1977. |
[16] |
G. Lachaud, The parameters of projective Reed-Müller codes, Discrete Math., 81 (1990), 217-221.doi: 10.1016/0012-365X(90)90155-B. |
[17] |
G. Lachaud, Number of points of plane sections and linear codes defined on algebraic varieties, in Arithmetic, Geometry and Coding Theory, Walter de Gruyter, 1993. |
[18] |
J. B. Little, Algebraic geometry codes from higher dimensional varieties, in Advances in Algebraic Geometry Codes, World Sci. Publ., Hackensack, NJ, 2008, 257-293.doi: 10.1142/9789812794017_0007. |
[19] |
A. Sboui, Second highest number of points of hypersurfaces in $\F_q^n$, Finite fields and their applications, 13 (2007), 444-449.doi: 10.1016/j.ffa.2005.11.002. |
[20] |
A. B. Sørensen, Projective Reed-Müller codes, IEEE Trans. Inform. Theory, 17 (1991), 1567-1576.doi: 10.1109/18.104317. |
[21] |
A. B. Sørensen, Rational Points on Hypersurfaces, Reed-Muller Codes and Algebraic Geometric Codes, Ph.D. thesis, Aarhus, 1991. |
[22] |
A. B. Sørensen, On the number of rational points on codimension-1 algebraic sets in $P^n (F_q)$, Discrete Math., 135 (1994), 321-324.doi: 10.1016/0012-365X(93)E0009-S. |
[23] |
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, New York, 1991. |
[24] |
M. Tsfasman, S. Vladut and D. Nogin, Algebraic Geometric Codes: Basic Notions, AMS, 2007.doi: 10.1090/surv/139. |
[25] |
A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., 55 (1949), 497-508. |
[26] |
J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257.doi: 10.1016/0022-314X(92)90091-3. |
[27] |
K. Yang and V. Kumar, On the true minimum distance of Hermitian codes, Coding Theory and Algebraic Geometry, Springer, Berlin, 1992, 99-107.doi: 10.1007/BFb0087995. |
[28] |
M. Zarzar, Error-correcting codes on low rank surfaces, Finite Fields Appl., 13 (2007), 727-737.doi: 10.1016/j.ffa.2007.05.001. |