Citation: |
[1] |
A. Adolphson and S. Sperber, On the degree of the L-function associated with an exponential sum, Compos. Math., 68 (1988), 125-159. |
[2] |
Y. Aubry and F. Rodier, Differentially 4-uniform functions, in "Arithmetic, Geometry, Cryptography and Coding Theory 2009" (eds. D. Kohel and R. Rolland), Amer. Math. Soc., (2010), 1-8. |
[3] |
A. Cafure and G. Matera, Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl., 12 (2006), 155-185.doi: 10.1016/j.ffa.2005.03.003. |
[4] |
Q. Cheng and E. Murray, On deciding deep holes of Reed-Solomon codes, in "Theory and Applications of Models of Computation,'' Springer, Berlin, (2007), 296-305.doi: 10.1007/978-3-540-72504-6_27. |
[5] |
R. Coulter and M. Henderson, A note on the roots of trinomials over a finite field, Bull. Austral. Math. Soc., 69 (2004), 429-432.doi: 10.1017/S0004972700036200. |
[6] |
T. Ernst, Generalized Vandermonde determinants, report 2000: 6 Matematiska Institutionen, Uppsala Universitet, 2000; available online at http://www2.math.uu.se/research/pub/Ernst1.pdf |
[7] |
D. K. Faddeev and I. S. Sominskii, "Problems in Higher Algebra," Freeman, San Francisco, 1965. |
[8] |
S. Ghorpade and G. Lachaud, Étale cohomology, Lefschetz theorems and number of points of singular varieties over finite fields, Mosc. Math. J., 2 (2002), 589-631. |
[9] |
S. Ghorpade and G. Lachaud, Number of solutions of equations over finite fields and a conjecture of Lang and Weil, in "Number Theory and Discrete Mathematics" (eds. A.K. Agarwal et al.), Hindustan Book Agency, (2002), 269-291. |
[10] |
V. Guruswami and A. Vardy, Maximum-likelihood decoding of Reed-Solomon codes is NP-hard, IEEE Trans. Inform. Theory, 51 (2005), 2249-2256.doi: 10.1109/TIT.2005.850102. |
[11] |
J. Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci., 24 (1983), 239-277.doi: 10.1016/0304-3975(83)90002-6. |
[12] |
N. Katz, Sums of Betti numbers in arbitrary characteristic, Finite Fields Appl., 7 (2001), 29-44.doi: 10.1006/ffta.2000.0303. |
[13] |
E. Kunz, "Introduction to Commutative Algebra and Algebraic Geometry,'' Birkhäuser, Boston, 1985. |
[14] |
A. Lascoux and P. Pragracz, Jacobian of symmetric polynomials, Ann. Comb., 6 (2002), 169-172.doi: 10.1007/PL00012583. |
[15] |
J. Li and D. Wan, On the subset sum problem over finite fields, Finite Fields Appl., 14 (2008), 911-929.doi: 10.1016/j.ffa.2008.05.003. |
[16] |
Y.-J. Li and D. Wan, On error distance of Reed-Solomon codes, Sci. China Ser. A, 51 (2008), 1982-1988.doi: 10.1007/s11425-008-0066-3. |
[17] |
R. Lidl and H. Niederreiter, "Finite Fields,'' 2nd edition, Addison-Wesley, Massachusetts, 1997. |
[18] |
F. Rodier, Borne sur le degré des polynômes presque parfaitement non-linéaires, in "Arithmetic, Geometry, Cryptography and Coding Theory,'' Amer. Math. Soc., (2009), 169-181. |
[19] |
I. R. Shafarevich, "Basic Algebraic Geometry: Varieties in projective space,'' Springer, Berlin, 1994. |
[20] |
D. Wan, Generators and irreducible polynomials over finite fields, Math. Comp., 66 (1997), 1195-1212.doi: 10.1090/S0025-5718-97-00835-1. |