Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China
<p>Geographical distribution of meteorological stations in Jiangsu Province.</p> "> Figure 2
<p>Annual cycle of monthly precipitation (<b>a</b>) and scatter plot with fitted regression line of annual precipitation (<b>b</b>) derived from TRMM 3B43 and observations; all are averaged over the Jiangsu Province for the period 1998–2014; The horizontal and vertical error bar in <a href="#water-08-00221-f002" class="html-fig">Figure 2</a>b denote the standard deviation of annual precipitation derived from TRMM 3B43 and observations, respectively.</p> "> Figure 3
<p>Scatter plots with fitted regression lines of seasonal precipitation derived from TRMM 3B43 and observations; all are averaged over the Jiangsu Province for the period 1998–2014; The horizontal and vertical error bars denote the standard deviation of seasonal precipitation derived from observations and TRMM 3B43, respectively.</p> "> Figure 4
<p>3D scatter plots of seasonal precipitation derived from TRMM 3B43 and observations per station in Jiangsu Province for the period 1998–2014; the green and red dots denote the stations with correlation coefficient significant at the 95% and 99% confidence level, respectively; thehollow dots denote the stations with correlation coefficients not significant at the 95% confidence level.</p> "> Figure 5
<p>Mean seasonal distribution of precipitation from observations and the TRMM 3B43 product, with corresponding statistical error estimations in Jiangsu Province, 1998–2014; The bold line indicates values of zero; please note that the color bars in the middle panels are not identical.</p> "> Figure 6
<p>SPI time series calculated from observations (upper panel) and TRMM 3B43 (lower panel) at various monthly time scales (1 to 24 months) over Jiangsu Province, 1998–2014.</p> "> Figure 7
<p>SPI time series calculated from observations (<b>blue and red shaded bars</b>) and TRMM 3B43 (solid line) at time scales of (<b>a</b>) 3-months; (<b>b</b>) 6-months; (<b>c</b>) 12-months; and (<b>d</b>) 24-months over Jiangsu Province, 1998–2014.</p> "> Figure 7 Cont.
<p>SPI time series calculated from observations (<b>blue and red shaded bars</b>) and TRMM 3B43 (solid line) at time scales of (<b>a</b>) 3-months; (<b>b</b>) 6-months; (<b>c</b>) 12-months; and (<b>d</b>) 24-months over Jiangsu Province, 1998–2014.</p> "> Figure 8
<p>Correlation coefficients of the SPI time series calculated from observations and TRMM 3B43 at time scales of 3-, 6-, 12-, and 24-months for each station in Jiangsu Province, 1998–2014; hollow dots indicate stations, which are not significant at the 95% confidence level.</p> ">
Abstract
:1. Introduction
2. Study Area: Geographical Setting
3. Data and Methodology
3.1. Precipitation Datasets
3.2. Methodology
4. Results
4.1. Temporal Validation
4.2. Spatial Validation
4.3. Validation of the TRMM 3B43 Product for Drought Monitoring
5. Conclusions
6. Disscusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bordi, I.; Fraedrich, K.; Jiang, J.M.; Sutera, A. Spatio-temporal variability of dry and wet periods in eastern China. Theor. Appl. Climatol. 2004, 79, 81–91. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.G.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Damberg, L.; AghaKouchak, A. Global trends and patterns of drought from space. Theor. Appl. Climatol. 2014, 117, 441–448. [Google Scholar] [CrossRef]
- Almazroui, M. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res. 2011, 99, 404–414. [Google Scholar] [CrossRef]
- McRoberts, D.B.; Nielsen-Gammon, J.W. The Use of a High-Resolution Standardized Precipitation Index for Drought Monitoring and Assessment. J. Appl. Meteor. Climatol. 2012, 51, 68–83. [Google Scholar] [CrossRef]
- Stampoulis, D.; Anagnostou, E.N. Evaluation of Global Satellite Rainfall Products over Continental Europe. J. Hydrometeorol. 2012, 13, 588–603. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J. Monitoring Drought Conditionsand Their Uncertainties in Africa Using TRMM Data. J. Appl. Meteorol. Clim. 2012, 51, 1867–1874. [Google Scholar] [CrossRef]
- Zulkafli, Z.; Buytaert, W.; Onof, C.; Manz, B.; Tarnavsky, E.; Lavado, W.; Guyot, J.L. A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applicaiotns over Andean-Amazon River Basins. J. Hydrometeorol. 2014, 15, 581–592. [Google Scholar] [CrossRef]
- Zhao, T.B.; Yatagai, A. Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China. Int. J. Climatol. 2014, 34, 2749–2762. [Google Scholar] [CrossRef]
- Qu, J.J.; Powell, A.M.; Sivakumar, M.V.K. Satellite-Based Applications on Climate Change; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Fleming, K.; Awange, J.L. Comparing the version 7 TRMM 3B43 monthly precipitation product with the TRMM 3B43 version 6/6A and Bureau of Meteorology datasets for Australia. Aust. Meteorol. Oceanogr. J. 2013, 63, 421–426. [Google Scholar]
- Pfeifroth, U.; Mueller, R.; Ahrens, B. Evaluation of Satellite-Based and Reanalysisprecipitation data in the tropical pacific. J. Appl. Meteorol. Clim. 2013, 52, 634–644. [Google Scholar] [CrossRef]
- Prakash, S.; Gairola, R.M. Validation of TRMM-3B42 precipitation product over the tropical indianocean using rain gauge data from the RAMA buoy array. Theor. Appl. Climatol. 2014, 115, 451–460. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multisatellite Precipitation Analysis (TMPA). In Satellite Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer Verlag: New York, NY, USA, 2010; pp. 3–22. [Google Scholar]
- Prakash, S.; Mahesh, C.; Gairola, R.M. Comparison of TRMM Multisatellite Precipitation Analysis (TMPA)-3B43 version 6 and 7 products with rain gauge data from ocean buoys. Remote Sens. Lett. 2013, 4, 677–685. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; Roo, A.D. Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Chen, Y.; Ebert, E.E.; Walsh, K.J.E.; Davidson, N.E. Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. J. Geophys. Res. 2013, 118. [Google Scholar] [CrossRef]
- Gebremichael, M.; Hossain, F. Satellite Rainfall Applications for Surface Hydrology; Springer: Houten, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Du, L.T.; Tian, Q.J.; Yu, T.; Meng, Q.Y.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Dutra, E.; Wetterhall, F.; Giuseppe, F.D.; Naumann, G.; Barbosa, P.; Vogt, J.; Pozzi, W.; Pappenberger, F. Global meteorological drought-Part 1: Probabilistic monitoring. Hydrol. Earth Syst. Sci. 2014, 18, 2657–2667. [Google Scholar] [CrossRef]
- Su, F.G.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Wagner, S.; Kunstmann, H.; Bárdossy, A.; Conrad, C.; Colditz, R.R. Water balance estimation of a poorly gauged catchment in West Africa using dynamically downscaled meteorological fields and remote sensing information. Phys. Chem. Earth 2009, 34, 225–235. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Smith, T.M.; Arkin, P.A.; Bates, J.J.; Huffman, G.J. Estimating Bias of Satellite-BasedPrecipitation Estimates. J. Hydrometeorol. 2006, 7, 841–856. [Google Scholar] [CrossRef]
- Hossain, F.; Huffman, G.J. Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeorol. 2008, 9, 563–575. [Google Scholar] [CrossRef]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.D.; Huffman, G.J.; Ren, L.L.; Hong, Y. Global view of real-time TRMM Multi-satellite Precipitation Analysis: Implication for its successor Global Precipitation Measurement mission. Bull. Am. Meteorol. Soc. 2014, 96, 283–296. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Gourley, J.J.; Huffman, G.J.; Tian, Y.D.; Cao, Q.; Yong, B.; Kirstetter, P.E.; Hu, J.J.; Hardy, J.; et al. Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States. Water Resour. Res. 2013, 49, 8174–8186. [Google Scholar] [CrossRef]
- Vernimmen, R.R.E.; Hooijer, A.; Mamenun; Aldrian, E.; van Dijk, A.I.J.M. Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrol. Earth Syst. Sci. 2012, 16, 133–146. [Google Scholar] [CrossRef]
- Aghakouchak, A.; Nakhjiri, N. A near real-time satellite-based global drought climate data record. Environ. Res. Lett. 2012, 7, 044037. [Google Scholar] [CrossRef]
- Zhang, A.Z.; Jia, G.S. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn (accessed on 20 May 2016).
- Lu, E.; Liu, S.Y.; Luo, Y.L.; Zhao, W.; Li, H.; Chen, H.X.; Zeng, Y.T.; Liu, P.; Wang, X.M.; Higgins, R.W.; et al. The atmospheric anomalies associated with the drought over the Yangtze River basin during spring 2011. J. Geophys. Res. 2014, 119, 5881–5894. [Google Scholar] [CrossRef]
- Goddard Earth Science Data and Information Services Center (GES DISC). Available online: http://disc.sci.gsfc.nasa.gov (accessed on 20 May 2016).
- Fischer, T.; Gemmer, M.; Su, B.; Scholten, T. Hydrological long-term dry and wet periods in the Xijiang River basin, South China. Hydrol. Earth Syst. Sci. 2013, 17, 135–148. [Google Scholar] [CrossRef]
- McKee, T.; Doesken, N.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology; American Meteorological Society: Anaheim, CA, USA, 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Droughts; Research Paper 45; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; p. 58.
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Sienz, F.; Bothe, O.; Fraedrich, K. Monitoring and quantifying future climate projections of dryness and wetness extreme: SPI bias. Hydrol. Earth Syst. Sci. 2012, 16, 2143–2157. [Google Scholar] [CrossRef]
- Farahmand, A.; AghaKouchak, A.A. generalized framework for deriving nonparametric standardized drought indicators. Adv. Water Resour. 2015, 76, 140–145. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Standardized Precipitation Index User Guide; WMO-No 1090; Svoboda, M., Hayes, M., Wood, D., Eds.; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Li, Y.Y.; KOU, X.W.; Fang, L.X.; Sun, G.R. Analysis and model evaluation of the relationship between clouds and precipitation over eastern China. Acta Meteorol. Sin. 2015, 73, 766–777. [Google Scholar]
- Aghakouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Maggioni, V.; Sapiano, M.R.P.; Adler, R.F. Estimating Uncertainties in High-Resolution Satellite Precipitation Products:Systematic or Random Error? J. Hydrometeorol. 2016, 17, 1119–1129. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect on the length of record on the Standardized Precipitation Index calculation. Int. J. Climatol. 2005, 25, 505–520. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detectedfromspace? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
Descriptive Statistics | Equation | Unit |
---|---|---|
R2 | - | |
Bias | % | |
RMSE | mm |
SPI | Classification | Probability (%) |
---|---|---|
1.0 > SPI ≥ −1.0 | Near normal | 68.2 |
−1.0 ≥ SPI > −1.5 | Moderate drought | 9.2 |
−1.5 ≥ SPI > −2.0 | Severe drought | 4.4 |
SPI ≤ −2.00 | Extreme drought | 2.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Fischer, T.; Zeng, Y.; Fraedrich, K. Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China. Water 2016, 8, 221. https://doi.org/10.3390/w8060221
Tao H, Fischer T, Zeng Y, Fraedrich K. Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China. Water. 2016; 8(6):221. https://doi.org/10.3390/w8060221
Chicago/Turabian StyleTao, Hui, Thomas Fischer, Yan Zeng, and Klaus Fraedrich. 2016. "Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China" Water 8, no. 6: 221. https://doi.org/10.3390/w8060221