Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study
"> Figure 1
<p>Sanitation Concepts (<b>1</b>–<b>4</b>) included in the model with wastewater streams and corresponding treatment systems (AS = activated sludge process; SBR = sequencing batch reactor, MBR = membrane bioreactor; A-trap = A-stage of AB-process; TF = trickling filter; UASB = up-flow anaerobic sludge blanket reactor; OLAND = oxygen limited anaerobic nitrification denitrification).</p> "> Figure 2
<p>Total primary energy consumption in sanitation concepts with different grey water treatment configurations.</p> "> Figure 3
<p>Nutrient recovery in Concepts 2–4 with different grey water treatment configurations.</p> "> Figure 4
<p>Total primary energy consumption in sanitation concepts with and without indirect energy gain from water saving and reuse, and nutrient recovery.</p> "> Figure 5
<p>Chemical use in Concepts 1–4 with different grey water treatment configurations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the Model
2.2. Data Inventory: Location Specific Data
2.3. Data Inventory: General Data
Parameter | Unit | Water use |
---|---|---|
Normal flush toilet (Concept 1) | L/cap/d | 34 1 |
Vacuum toilet (Concept 3) | L/cap/d | 6 2,* |
Urine diverting toilet (gravity) (Concepts 2 and 4) | L/cap/d | 5 3,* |
Urine diverting toilet (vacuum) (Concept 4) | L/cap/d | 2 ** |
Kitchen grinder (Concepts 1, 2, 3 and 4) | L/cap/d | 0.6 2 |
Parameter | Unit | Feces | Urine | Kitchen refuse | Grey water |
---|---|---|---|---|---|
Temperature | °C | 37 * | 37 ** | 20 * | 32 2 |
Volume | L/cap/d | 0.1 1 | 1.4 1 | 0.2 1 | 79 4 |
COD | g/cap/d | 50 1 | 11 1 | 59 1 | 52 1 |
BOD 5 | g/cap/d | 24 1 | 5.5 1 | 37 ** | 27 1 |
TSS | g/cap/d | 30 1 | 40 1 | 79 1 | 55 1 |
TN | g/cap/d | 1.8 1 | 9 1 | 1.7 1 | 1.2 1 |
NH4+-N | g/cap/d | 1.2 3 | 9 5 | - | 0.1 *** |
TP | g/cap/d | 0.5 1 | 0.8 1 | 0.2 1 | 0.4 1 |
PO43−-P | g/cap/d | 0.2 3 | 0.3 3 | - | 0.1 *** |
K | g/cap/d | 0.9 1 | 2.8 1 | 0.2 1 | 0.8 1 |
2.4. Data Inventory: Treatment System Specific Data
Parameter | Unit | Concept 1 | Concept 2 | Concepts 3 and 4 Black water/feces and kitchen refuse | Grey water | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
UASB | OLAND | Struvite | TF | Total | SBR | A-trap | MBR | ||||
COD | % | 92 1 | 92 7 | 83 2 | 53 2 | - | 85 3 | 99 ** | 90 4 | 42 5 | 75 6 |
BOD5 | % | 98 1 | 92 * | 83 2 | 53 * | - | 85 3 | 99 ** | 90 * | 42 * | 75 6 |
TSS | % | 95 1 | 92 * | 83 2 | - | - | 85 3 | 97 ** | 76 4 | 42 * | ≥95 6 |
TN | % | 80 1 | 72 7 | 1 2 | 73 2 | 9 8 | - | 76 ** | 35 4 | 36 5 | 81 6 |
TP | % | 82 1 | 79 7 | 33 2 | - | 96 8 | - | 98 ** | 28 4 | 40 5 | 65 6 |
2.5. Calculations for Energy Balance
2.6. Calculations for Chemical Use
2.7. Calculations for Reactor Dimensions and Land Area Requirement
3. Results and Discussion
3.1. Energy Balance
3.2. Water Reuse
Parameter | Unit | Grey water effluent quality | Suggested reuse standards [38] | |||||
---|---|---|---|---|---|---|---|---|
(This study) | Recreational impoundments | Urban reuse | ||||||
SBR-TF | A-Trap-TF | MBR-TF | Restricted | Unrestricted | Restricted | Unrestricted | ||
BOD5 | mg/L | 5 | 30 | 14 | 30 | 10 | 30 | 10 |
TSS | mg/L | 25 | 60 | 6 | 30 | - | 30 | - |
TN | mg/L | 10 | 10 | 3 | 1 | 1 | - | - |
TP | mg/L | 4 | 3 | 2 | 0.05 | 0.05 | - | - |
3.3. Nutrient Recovery
3.4. Energy Balance Including Water Saving and Reuse and Nutrient Recovery
3.5. Chemical Use
3.6. Effluent Quality
Parameter | Unit | Concept 1 | Concept 2 | Concept 3 | Concept 4 | Discharge standards [45] |
---|---|---|---|---|---|---|
COD | mg/L | 46 | 44 | 155 | 187 | 125 |
BOD5 | mg/L | 6 | 24 | 83 | 100 | 25 |
TSS | mg/L | 34 | 47 | 393 | 385 | 35 |
TN | mg/L | 9 | 6 | 350 | 70 | 15 |
TP | mg/L | 4 | 1 | 27 | 17 | 2 |
COD | g/cap/y | 5037 | 4802 | 599 | 551 | - |
BOD5 | g/cap/y | 657 | 2619 | 321 | 297 | - |
TSS | g/cap/y | 3723 | 5129 | 1520 | 1148 | - |
TN | g/cap/y | 986 | 655 | 1392 | 221 | - |
TP | g/cap/y | 438 | 109 | 104 | 51 | - |
3.7. Land Area Requirement
3.8. Sensitivity Analysis
3.9. Outlook
4. Conclusions
Acknowledgments
A. Appendix
A.1. Calculations for Energy Balance
A.2. Calculations for Chemical Use
A.3. Calculations for Reactor Dimensions and Land Area Requirement
A.4. Energy Balance
Parameter | Unit | Concept 1 | Concept 2 |
---|---|---|---|
Urine collection | kg/cap/y | - | 743 |
Sludge production | kgWS/cap/y | 1048 | 1201 |
Ecollection | kgDS/cap/y | 131 | 150 |
kWh/cap/y | 25 | 25 | |
MJ/cap/y | 288 | 288 | |
Eaeration | MJ/cap/y | 135 | 68 |
MJ/cap/y | 432 | 218 | |
Emixing | MJ/cap/y | 37 | 17 |
MJ/cap/y | 118 | 54 | |
Epumping | MJ/cap/y | 20 | 15 |
MJ/cap/y | 64 | 48 | |
Eheating(digester) | MJ/cap/y | 104 | 114 |
Edewatering | MJ/cap/y | 5 | 5 |
Esludge transport | MJ/cap/y | 6 | 7 |
Eincineration transport | MJ/cap/y | 54 | 52 |
Eurine transport | MJ/cap/y | - | 178 |
Emethane | MJ/cap/y | 157 | 277 |
Etotal | MJ/cap/y | 914 | 687 |
Parameter | Unit | Concept 3 | Concept 4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SBR | A-trap | MBR | Gravity toilet | Vacuum toilet | ||||||
SBR | A-trap | MBR | SBR | A-trap | MBR | |||||
UASB influent | ||||||||||
Volume | m3/cap/y | 3 | 4 | 5 | 2 | 3 | 4 | 1 | 2 | 3 |
Temperature | °C | 16 | 15 | 13 | 12 | 11 | 11 | 11 | 11 | 10 |
Methanization level | % | 70 | 79 | 80 | 78 | 79 | 80 | 78 | 79 | 80 |
Sludge production | ||||||||||
UASB reactor | kg/cap/y | 277 | 321 | 365 | 299 | 343 | 394 | 299 | 343 | 394 |
SBR/A-trap/MBR | kg/cap/y | 373 | 682 | 2128 | 373 | 682 | 2128 | 373 | 682 | 2128 |
Urine collection | kg/cap/y | - | - | - | 743 | 743 | 743 | 743 | 743 | 743 |
Parameter | Unit | Concept 3 | Concept 4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SBR | A-trap | MBR | Gravity toilet | Vacuum toilet | ||||||
SBR | A-trap | MBR | SBR | A-trap | MBR | |||||
Ecollection | kWh/cap/y | 30 | 30 | 30 | 5 | 5 | 5 | 13 | 13 | 13 |
MJ/cap/y | 346 | 346 | 346 | 58 | 58 | 58 | 150 | 150 | 150 | |
Eheating(UASB) | MJ/cap/y | 341 | 422 | 584 | 305 | 385 | 547 | 199 | 280 | 441 |
EOLAND | kWh/cap/y | 1.3 | 1.6 | 2.2 | 0.2 | 0.3 | 0.4 | 0.3 | 0.4 | 0.8 |
MJ/cap/y | 15 | 18 | 25 | 2 | 3 | 5 | 3 | 5 | 9 | |
EStruvite | kWh/cap/y | 4.4 | 5.4 | 7.5 | 0.8 | 1.0 | 1.5 | 0.9 | 1.5 | 2.7 |
MJ/cap/y | 51 | 62 | 86 | 9 | 12 | 17 | 10 | 17 | 31 | |
ETF (BW) | kWh/cap/y | 0.2 | 0.3 | 0.4 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.2 |
MJ/cap/y | 2 | 3 | 5 | 2 | 2 | 3 | 1 | 1 | 2 | |
Esludge transport | MJ/cap/y | 156 | 77 | 88 | 161 | 83 | 95 | 161 | 83 | 95 |
ESBR | MJ/cap/y | 33 | - | - | 33 | - | - | 33 | - | - |
MJ/cap/y | 106 | - | - | 106 | - | - | 106 | - | - | |
EA-trap | MJ/cap/y | - | 7.2 | - | - | 7.2 | - | - | 7.2 | - |
MJ/cap/y | - | 23 | - | - | 23 | - | - | 23 | - | |
EMBR | kWh/cap/y | - | - | 8.7 | - | - | 8.7 | - | - | 8.7 |
MJ/cap/y | - | - | 100 | - | - | 100 | - | - | 100 | |
ETF (GW) | kWh/cap/y | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 |
MJ/cap/y | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | |
Eurine transport | MJ/cap/y | - | - | - | 178 | 178 | 178 | 178 | 178 | 178 |
Emethane | MJ/cap/y | 274 | 352 | 401 | 278 | 324 | 373 | 278 | 324 | 373 |
Etotal | MJ/cap/y | 767 | 624 | 857 | 567 | 444 | 654 | 555 | 437 | 658 |
References
- Larsen, T.A.; Alder, A.C.; Eggen, R.I.; Maurer, M.; Lienert, J. Source separation: Will we see a paradigm shift in wastewater handling? Environ. Sci. Technol. 2009, 43, 6121–6125. [Google Scholar] [CrossRef] [PubMed]
- Otterpohl, R.; Braun, U.; Oldenburg, M. Innovative technologies for decentralized water-, wastewater and biowaste management in urban and peri-urban areas. Water Sci. Technol. 2003, 48, 23–32. [Google Scholar] [PubMed]
- Wilsenach, J.A.; Maurer, M.; Larsen, T.A.; van Loosdrecht, M.C.M. From waste treatment to integrated resource management. Water Sci. Technol. 2003, 48, 1–9. [Google Scholar] [PubMed]
- Zeeman, G.; Kujawa, K.; de Mes, T.; Hernandez, L.; de Graaff, M.; Abu-Ghunmi, L.; Mels, A.; Meulman, B.; Temmink, H.; Buisman, C.; et al. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). Water Sci. Technol. 2008, 57, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, K. Anaerobic Treatment of Concentrated Wastewater in DESAR Concepts; STOWA: Utrecht, the Netherlands, 2005. [Google Scholar]
- Vlaeminck, S.E.; Terada, A.; Smets, B.F.; Linden, D.V.D.; Boon, N.; Verstraete, W.; Carballa, M. Nitrogen removal from digested black water by one-stage partial nitritation and anammox. Environ. Sci. Technol. 2009, 43, 5035–5041. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Schwegler, P.; Larsen, T. Nutrients in urine: Energetic aspects of removal and recovery. Nutr. Remov. Recover. 2003, 48, 37–46. [Google Scholar]
- Larsen, T.A.; Lienert, J. NoMix–A New Approach to Urban Water Management; Novaquatis Final Report; Eawag: Dübendorf, Switzerland, 2007. [Google Scholar]
- Hernández Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C.J. Comparison of three systems for biological greywater treatment. Water 2010, 2, 155–169. [Google Scholar] [CrossRef]
- Avery, L.M.; Frazer-Williams, R.A.D.; Winward, G.; Shirley-Smith, C.; Liu, S.; Memon, F.A.; Jefferson, B. Constructed wetlands for grey water treatment. Ecohydrol. Hydrobiol. 2007, 7, 191–200. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C.A. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecol. Eng. 2005, 25, 491–500. [Google Scholar] [CrossRef]
- Hernández Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts. Bioresour. Technol. 2010, 101, 9065–9070. [Google Scholar] [CrossRef] [PubMed]
- García-Morales, J.L.; Nebot, E.; Romero, L.I.; Sales, D. Comparison between acidogenic and methanogenic inhibition caused by linear alkylbenzene-sulfonate (LAS). Chem. Biochem. Eng. Q. 2001, 15, 13–20. [Google Scholar]
- Böhnke, B. Energieminimierung durch das Adsorptions-Belebungsverfahren; Gewässerschutz Wasser Abwasser No. 49; Instituts für Siedlungswasserwirtschaft der RWTH: Aachen, Germany, 1981. [Google Scholar]
- Otterpohl, R.; Grottker, M.; Lange, J. Sustainable water and waste management in urban areas. Water Sci. Technol. 1997, 35, 121–133. [Google Scholar] [CrossRef]
- Hellström, D. Exergy analysis: A comparison of source separation systems and conventional treatment systems. Water Environ. Res. 1999, 71, 1354–1363. [Google Scholar] [CrossRef]
- Benetto, E.; Nguyen, D.; Lohmann, T.; Schmitt, B.; Schosseler, P. Life cycle assessment of ecological sanitation system for small-scale wastewater treatment. Sci. Total Environ. 2009, 407, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Makropoulos, C.; Natsis, K.; Liu, S.; Mittas, K.; Butler, D. Decision support for sustainable option selection in integrated urban water management. Environ. Model. Softw. 2008, 23, 1448–1460. [Google Scholar] [CrossRef]
- Thibodeau, C.; Monette, F.; Glaus, M.; Laflamme, C.B. Economic viability and critical influencing factors assessment of black water and grey water source-separation sanitation system. Water Sci. Technol. 2011, 64, 2417–2424. [Google Scholar] [CrossRef] [PubMed]
- Van Beuzekom, I.; Dekker, S.; Teunissen, M. Duurzame afvalwaterbehandeling Geerpark Heusden; Grontmij: De Bilt, the Netherlands, 2010. [Google Scholar]
- KNMI (Koninklijk Nederlands Meteorologisch Instituut). Annual Report 2010: KNMI round the Clock; KNMI: De Bilt, the Netherlands, 2010. [Google Scholar]
- Wilsenach, J.A.; van Loosdrecht, M.C.M. Integration of processes to treat wastewater and source-separated urine. J. Environ. Eng. 2006, 132, 331–341. [Google Scholar] [CrossRef]
- Statistics Netherlands. Urban Wastewater Treatment per Province and River Basin District; Statistics Netherlands: Den Haag, the Netherlands, 2011.
- Kujawa-Roeleveld, K.; Zeeman, G. Anaerobic treatment in decentralised and source-separation-based sanitation concepts. Rev. Environ. Sci. Biotechnol. 2006, 5, 115–139. [Google Scholar] [CrossRef]
- Larsen, T.A.; Peters, I.; Alder, A.; Eggen, R.; Maurer, M.; Muncke, J. Re-engineering the toilet for sustainable waste water management. Environ. Sci. Technol. 2001, 35, 192–197. [Google Scholar] [CrossRef]
- Hernández Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C. Characterization and anaerobic biodegradability of grey water. Desalination 2011, 270, 111–115. [Google Scholar] [CrossRef]
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Anaerobic treatment of concentrated black water in a UASB reactor at a short HRT. Water 2010, 2, 101–119. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill Series in Civil and Environmental Engineering; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Vinnerås, B.; Nordin, A.; Niwagaba, C.; Nyberg, K. Inactivation of bacteria and viruses in human urine depending on temperature and dilution rate. Water Res. 2008, 42, 4067–4074. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for the Safe Use of Wastewater, Excreta and Greywater, Volume 3: Wastewater and Excreta Use in Aquaculture; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Frijns, J.; Mulder, M.; Roorda, J. Op weg Naar een Klimaatneutrale Waterketen; STOWA: Utrecht, the Netherlands, 2008. [Google Scholar]
- RIONED Foundation. Urban Drainage Statistics 2009–2010; RIONED Foundation: Ede, the Netherlands, 2009. [Google Scholar]
- Kujawa-Roeleveld, K.; Weijma, J.; Nanninga, T. Nieuwe Sanitatie op Wijkniveau: Resultaten en Ervaringen Demo-site Sneek en Perspectieven voor Opschaling; LeAF (Lettinga Associates Foundation): Wageningen, the Netherlands, 2012. [Google Scholar]
- Reactor Performance of AB-Process at the DeSaH Demonstration Site; DeSaH: Sneek, the Netherlands, 2010.
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Energy and phosphorus recovery from black water. Water Sci. Technol. 2011, 63, 2759–2765. [Google Scholar] [CrossRef] [PubMed]
- UCPTE (Union pour la coordination de la production et du transport de l’lectricit). Yearly Report 1993; UCPTE: Vienna, Austria, 1994. [Google Scholar]
- Houillon, G.; Jolliet, O. Life cycle assessment of processes for the treatment of wastewater urban sludge: Energy and global warming analysis. J. Clean. Prod. 2005, 13, 287–299. [Google Scholar] [CrossRef]
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef] [PubMed]
- Adamsson, M. Potential use of human urine by greenhouse culturing of microalgae (Scenedesmus acuminatus), zooplankton (Daphnia magna) and tomatoes (Lycopersicon). Ecol. Eng. 2000, 16, 243–254. [Google Scholar] [CrossRef]
- Kuntke, P.; Śmiech, K.; Bruning, H.; Zeeman, G.; Saakes, M.; Sleutels, T.; Hamelers, H.; Buisman, C. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res. 2012, 46, 2627–2636. [Google Scholar] [CrossRef] [PubMed]
- De Graaff, M. Resource Recovery from Black Water. Ph.D. Thesis, Wageningen University, Wageningen, the Netherlands, 2010. [Google Scholar]
- Van Dooren, H.J.C.; Hanegraaf, M.C.; Blanken, K. Emission and Compost Quality of on Farm Composted Dairy Slurry. PraktijkRapport Rundvee 68; Animal Sciences Group, Wageningen University: Wageningen, the Netherlands, 2005. [Google Scholar]
- Remy, D.I.C.; Ruhland, I.A. Ecological Assessment of Alternative Sanitation Concepts with Life Cycle Assessment. Technical University Berlin: Berlin, Germany, 2006; Volume 55. [Google Scholar]
- Verstraete, W.; Vlaeminck, S.E. ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future. Int. J. Sustain. Dev. World Ecol. 2011, 18, 253–264. [Google Scholar] [CrossRef]
- European Commission. EU Water Framework Directive 91/271/EEC; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Maurer, M.; Pronk, W.; Larsen, T. Treatment processes for source-separated urine. Water Res. 2006, 40, 3151–3166. [Google Scholar] [CrossRef] [PubMed]
- Tidåker, P.; Mattsson, B.; Jönsson, H. Environmental impact of wheat production using human urine and mineral fertilisers—A scenario study. J. Clean. Prod. 2007, 15, 52–62. [Google Scholar] [CrossRef]
- Winker, M.; Clemens, J.; Reich, M.; Gulyas, H.; Otterpohl, R. Ryegrass uptake of carbamazepine and ibuprofen applied by urine fertilization. Sci. Total Environ. 2010, 408, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.; Joss, A. Human Pharmaceuticals, Hormones and Fragrances: The Challenge of Micropollutants in Urban Water Management; International Water Association: London, UK, 2006. [Google Scholar]
- Van Buuren, J.C.L. Sanitation Choice Involving Stakeholders. Ph.D. Thesis, University of Wageningen, Wageningen, The Netherlands, 2010. [Google Scholar]
- Elmitwalli, T.A.; Soellner, J.; de Keizer, A.; Bruning, H.; Zeeman, G.; Lettinga, G. Biodegradability and change of physical characteristics of particles during anaerobic digestion of domestic sewage. Water Res. 2001, 35, 1311–1317. [Google Scholar] [CrossRef]
- Fujie, K.; Bravo, H.E.; Kubota, H. Operational design and power economy of a rotating biological contactor. Water Res. 1983, 17, 1153–1162. [Google Scholar] [CrossRef]
- Meulman, B.; Zeeman, G.; Buisman, C.J.N. Treatment of Concentrated Black Water on Pilot Scale: Options and Challenges. In Proceedings of Sanitation Challenge, Wageningen, the Netherlands, 19–21 May 2008.
- Melin, T.; Jefferson, B.; Bixio, D.; Thoeye, C.; de Wilde, W.; de Koning, J.; van der Graaf, J.; Wintgens, T. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006, 187, 271–282. [Google Scholar] [CrossRef]
- Karassik, I.J.; Messina, J.P.; Cooper, P.; Heald, C.C. Pump Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Zeeman, G.; Lettinga, G. The role of anaerobic digestion of domestic sewage in closing the water and nutrient cycle at community level. Water Sci. Technol. 1999, 39, 187–194. [Google Scholar] [CrossRef]
- Dorussen, H.L. Ontwerp awzi Dokhaven; DBW/RIZA: Lelystad; Stora: Den Haag, the Netherlands, 1980. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tervahauta, T.; Hoang, T.; Hernández, L.; Zeeman, G.; Buisman, C. Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study. Water 2013, 5, 1006-1035. https://doi.org/10.3390/w5031006
Tervahauta T, Hoang T, Hernández L, Zeeman G, Buisman C. Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study. Water. 2013; 5(3):1006-1035. https://doi.org/10.3390/w5031006
Chicago/Turabian StyleTervahauta, Taina, Trang Hoang, Lucía Hernández, Grietje Zeeman, and Cees Buisman. 2013. "Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study" Water 5, no. 3: 1006-1035. https://doi.org/10.3390/w5031006
APA StyleTervahauta, T., Hoang, T., Hernández, L., Zeeman, G., & Buisman, C. (2013). Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study. Water, 5(3), 1006-1035. https://doi.org/10.3390/w5031006