Measuring Surface Velocity of Water Flow by Dense Optical Flow Method
<p>The schematic diagram of a target point tracking.</p> "> Figure 2
<p>Flow velocity measurement sketch.</p> "> Figure 3
<p>Vector velocity distribution map (<b>a</b>) and its local enlargement map (<b>b</b>).</p> "> Figure 4
<p>Contour map of the surface velocity of water flow (SVWF) of different frames estimated by Farneback optical flow method: (<b>a</b>) contour map of the 38th frame; (<b>b</b>) contour map of the 40th frame.</p> "> Figure 5
<p>Single frame SVWF variation curves and corresponding time-averaged SVWF variation curves of AA’, BB’ and CC’.</p> "> Figure 6
<p>Time-averaged SVWF distribution.</p> "> Figure 7
<p>Regression analysis and error estimation: (<b>a</b>) region 1; (<b>b</b>) region 2; and (<b>c</b>) region 3.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Principle Analysis of DOF Method
2.2. Experiment Design
2.2.1. Experiment Preparatory Work
2.2.2. Actual Flow Velocity Measurement and Video Acquisition
2.2.3. Video Processing
3. Results and Discussion
3.1. Water Flow Surface Velocity Field
3.2. Time-Averaged SVWF
3.3. Velocity Estimation and Error Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Portmann, F.T. Groundwater Use for Irrigation–A Global Inventory. J. Hydrol. Earth Syst. Sci. Discuss. 2010, 7. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. J. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, R.G.; Iversen, W.M. Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network. J. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [Google Scholar]
- Aricò, C.; Corato, G.; Tucciarelli, T. Discharge estimation in open channels by means of water level hydrograph analysis. J. Hydraul. Res. 2010, 48, 612–619. [Google Scholar] [CrossRef]
- Kawanisi, K.; Razaz, M.; Ishikawa, K. Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system. J. Water Resour. Res. 2012, 48, 5547. [Google Scholar] [CrossRef]
- Katakura, K.; Alain, P. Ultrasonic measurement method for transversal component of water flow velocity. In Proceedings of the International Symposium on Underwater Technology, Tokyo, Japan, 16–19 April 2002; pp. 45–48. [Google Scholar]
- Yoo, M.W.; Kim, Y.D.; Lyu, S. Flowrate and Velocity Measurement in Nakdong River Using ADCP. In Advances in Water Resources and Hydraulic Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1946–1949. [Google Scholar]
- Bradley, A.A.; Kruger, A.; Meselhe, E.A. Flow measurement in streams using video imagery. J. Water Resour. Res. 1999, 38, 51. [Google Scholar] [CrossRef]
- Fujita, I.; Muste, M.; Kruger, A. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. J. Hydraul. Res. 1998, 36, 397–414. [Google Scholar] [CrossRef]
- Fujita, I.; Aya, S. Refinement of LS-PIV Technique for Monitoring River Surface Flows. J. Water Res. 2000. [Google Scholar] [CrossRef]
- Jodeau, M.; Hauet, A.; Paquier, A.; Le Coz, J.; Dramais, G. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions. J. Flow Meas. Instrum. 2008, 19, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Wang, H. Measurements of water flow rates for T-shaped microchannels based on the quasi-three-dimensional velocities. J. Meas. Sci. Technol. 2012, 23, 055301. [Google Scholar] [CrossRef]
- Fujita, I.; Tsubaki, R. A Novel Free-Surface Velocity Measurement Method Using Spatio-Temporal Images. J. Hydraul. Meas. Exp. Methods 2002. [Google Scholar] [CrossRef]
- Gunawan, B.; Sun, X.; Sterling, M. The application of LS-PIV to a small irregular river for inbank and overbank flows. J. Flow Meas. Instrum. 2012, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bin Asad, S.M.S.; Lundström, T.S.; Andersson, A.G.; Hellström, J.G.I.; Leonardsson, K. Wall Shear Stress Measurement on Curve Objects with PIV in Connection to Benthic Fauna in Regulated Rivers. J. Water 2019, 11, 650. [Google Scholar] [CrossRef]
- Fang, S.Q.; Chen, Y.P.; Xu, Z.S.; Otoo, E.; Lu, S.Q. An Improved Integral Model for a Non-Buoyant Turbulent Jet in Wave Environment. J. Water 2019, 11, 765. [Google Scholar] [CrossRef]
- Bai, R.; Zhu, D.; Chen, H.; Li, D. Laboratory Study of Secondary Flow in an Open Channel Bend by Using PIV. J. Water 2019, 11, 659. [Google Scholar] [CrossRef]
- Scarano, F. Tomographic PIV: principles and practice. J. Meas. Sci. Technol. 2013, 24, 012001. [Google Scholar] [CrossRef]
- Jeanbourquin, D.; Sage, D.; Nguyen, L. Flow measurements in sewers based on image analysis: automatic flow velocity algorithm. J. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2011, 64, 1108–1114. [Google Scholar] [CrossRef]
- Milan, S.; Roger, B.; Vaclav, H. Image Processing, Analysis, and Machine Vision; Chapman & Hall Computing: Boca Raton, FL, USA, 1993. [Google Scholar]
- Xiaoping, H.; Ahuja, N. Motion and structure estimation using long sequence motion models. J. Image Vis. Comput. 1993, 11, 549–569. [Google Scholar] [CrossRef]
- Zach, C.; Pock, T.; Bischof, H. A Duality Based Approach for Realtime TV-L1 Optical Flow. J. DAGM 2007, 214–223. [Google Scholar] [CrossRef]
- Weinzaepfel, P.; Revaud, J.; Harchaoui, Z.; Schmid, C. DeepFlow: Large Displacement Optical Flow with Deep Matching. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1385–1392. [Google Scholar]
- Chiuso, A.; Favaro, P.; Jin, H.; Soatto, S. Structure from motion causally integrated over time. J. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 523–535. [Google Scholar] [CrossRef]
- Pei, S.C.; Lin, G.L. Vehicle-type motion estimation by the fusion of image point and line features. J. Pattern Recognit. Soc. 1998, 31, 333–344. [Google Scholar]
- Wu, C.C.; Zhang, G.; Huang, T.C.; Lin, K.P. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation. J. Microvasc. Res. 2009, 78, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhou, X.D.; Ye, K.; Liu, H.; Cao, B.; Huang, Y.B.; Ni, Y.; Yang, L.Z. A two-dimension velocity field measurement method for the thermal smoke basing on the optical flow technology. J. Flow Meas. Instrum. 2019, 70, 201637. [Google Scholar] [CrossRef]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. J. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Kearney, J.K.; Thompson, W.B. Bounding Constraint Propagation for Optical Flow Estimation. In Motion Understanding; Springer: Boston, MA, USA, 1988. [Google Scholar]
- Ke, R.; Li, Z.; Tang, J.; Wang, Y. Real-Time Traffic Flow Parameter Estimation from UAV Video Based on Ensemble Classifier and Optical Flow. J. IEEE Trans. Intell. Transp. Syst. 2018, 1–11. [Google Scholar] [CrossRef]
- Farneback, G. Fast and accurate motion estimation using orientation. In Proceedings of the 15th IAPR International Conference on Pattern Recognition, Barcelona, Spain, 3–8 September 2000. [Google Scholar]
- Farneback, G. Two-Frame Motion Estimation Based on Polynomial Expansion. J. Lect. Notes Comput. Sci. 2003, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Farneback, G. Very high accuracy velocity estimation using orientation tensors, parametric motion, and simultaneous segmentation of the motion field. In Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, 6 August 2002. [Google Scholar]
- Zhang, Z. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999. [Google Scholar]
- Geiger, A.; Moosmann, F.; Car, O.; Schuster, B. Automatic camera and range sensor calibration using a single shot. In Proceedings of the IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; pp. 3936–3943. [Google Scholar]
- Hoang, V.D.; Danilo, C.H.; Jo, K.H. Simple and Efficient Method for Calibration of a Camera and 2D Laser Rangefinder. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2014; pp. 561–570. [Google Scholar]
- Dong, W.; Isler, V. A Novel Method for Extrinsic Calibration of a 2-D Laser-Rangefinder and a Camera. IEEE Sens. J. 2018, 18, 4200–4211. [Google Scholar] [CrossRef]
Regions | Regression Formula | R2 | ARE |
---|---|---|---|
1 | 0.8109 | 6.50% | |
2 | 0.8389 | 4.87% | |
3 | 0.8458 | 4.88% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhao, R.; Gan, X.; Ma, X. Measuring Surface Velocity of Water Flow by Dense Optical Flow Method. Water 2019, 11, 2320. https://doi.org/10.3390/w11112320
Wu H, Zhao R, Gan X, Ma X. Measuring Surface Velocity of Water Flow by Dense Optical Flow Method. Water. 2019; 11(11):2320. https://doi.org/10.3390/w11112320
Chicago/Turabian StyleWu, Heng, Rongheng Zhao, Xuetao Gan, and Xiaoyi Ma. 2019. "Measuring Surface Velocity of Water Flow by Dense Optical Flow Method" Water 11, no. 11: 2320. https://doi.org/10.3390/w11112320