Origin of Plutonium-244 in the Early Solar System
<p>Ratios of the <math display="inline"><semantics> <msup> <mrow/> <mn>129</mn> </msup> </semantics></math>I/<math display="inline"><semantics> <msup> <mrow/> <mn>247</mn> </msup> </semantics></math>Cm isotopic ratio from all the WINNET (circles) and PRISM (triangles) models, with color as indicated in the box on the right side. The detailed label description can be found in <a href="#universe-08-00343-t002" class="html-table">Table 2</a> and in Paper I. Note that the scale is logarithmic.</p> "> Figure 2
<p>Ratios of the abundances of the three SLR of interest to their stable or long-lived isotopes from all the WINNET (circles) and PRISM (triangles) models, with colors as in <a href="#universe-08-00343-f001" class="html-fig">Figure 1</a>. Note that, differently to <a href="#universe-08-00343-f001" class="html-fig">Figure 1</a>, all the scales here are linear.</p> "> Figure 3
<p>Examples of solutions obtained using the WINNET set of yields and <math display="inline"><semantics> <msub> <mi>K</mi> <mi>best</mi> </msub> </semantics></math> for the time elapsed from the last <span class="html-italic">r</span>-process event to the formation of the first solids in the ESS that are consistent for all the isotopic ratios of <a href="#universe-08-00343-t001" class="html-table">Table 1</a>, except for the right top and middle panels, which correspond to <math display="inline"><semantics> <msup> <mrow/> <mn>129</mn> </msup> </semantics></math>I/<math display="inline"><semantics> <msup> <mrow/> <mn>247</mn> </msup> </semantics></math>Cm ratios just outside the required range. The colored dashed lines show the time elapsed as function of the free parameter <math display="inline"><semantics> <mi>δ</mi> </semantics></math> derived from each ratio (labels in the top left corner). The dashed blue vertical line represent the <math display="inline"><semantics> <mi>δ</mi> </semantics></math> value 345 Myr for which <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mn>244</mn> </msub> <mo>/</mo> <mi>δ</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, which marks the border between Regimes II and III. Uncertainty bands are a composition of the error distributions around the <math display="inline"><semantics> <mi>τ</mi> </semantics></math> and the ESS ratio for each isotope. They are calculated using a Monte-Carlo sampling of such error distributions (using the 1<math display="inline"><semantics> <mi>σ</mi> </semantics></math> values and normal distributions, as required). The plotted uncertainty bands are the 2<math display="inline"><semantics> <mi>σ</mi> </semantics></math> uncertainty of the Monte-Carlo runs. (Note that these areas are smaller than those shown in Figure S2 of Paper I because there all the different values of <span class="html-italic">K</span> where included in the bands).</p> ">
Abstract
:1. Introduction
2. Nucleosynthesis Calculations
3. Galactic Evolution and Origin of the SLRs in the ESS
3.1. One (Regime III) or Few (Regime II) Events and Time Elapsed from Last Event
3.2. Steady-State Equilibrium (Regime I) and Isolation Time
4. Summary and Conclusions
- In Section 3.1 (top section of Table 3), we considered Regimes II and III for Pu, corresponding to Myr and Regime III for I and Cm. More than half of the WINNET models that were already shown to reproduce the three ratios that involve I and Cm in Paper I, also provide a self-consistent solution for Pu. These models all correspond to the NS–NS merger disk cases dominated by moderately neutron-rich ejecta.
- In Section 3.2 (bottom section of Table 3), we considered Regime I for Pu, i.e., Myr, where this SLR reaches a steady-state value in the ISM. It is also possible to find a significant number of r-process models (mostly corresponding to the Jmhf nuclear input) that provide solutions for the ESS Pu abundance compatible to those of the SLR isotopes produced also by the s process: Pd and Hf (and the current ESS upper limit of Cs). However, no solutions exist in Regime I for Pu if the ESS value of Pu was twice as high as the value used here or if the Milky Way model was represented by .
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ESS | early Solar System |
GCE | galactic chemical evolution |
ISM | interstellar medium |
NSM | neutron star merger |
r process | neutron-capture process |
s process | neutron-capture process |
SLR | short-lived radioactive |
1 | The mean-life of the I/Cm ratio given in the table was obtained by Monte Carlo sampling of the uncertainties on the mean lives of the two isotopes, and , which are 5% and 6%, respectively, at 2 (for comparison, the uncertainty for Pu is 2%) within the usual formula: . Using the recommended values, would be equal to 2449 Myr, however, sampling of the uncertainties produces a lower value most of the time because the uncertainties make and move away from each other, and therefore their difference, at denominator in the formula above, increases. In general, it would be extremely useful if the half lives of I and Cm could be measured with higher precision than currently available. A more detailed statistical analysis should also be carried out considering that the peak value reported in the table is probably not the best statistical choice due to the exponential behaviour of the decay. In fact, although Myr is the most common value, when Myr abundances do not vary much anymore within the time scales, roughly 200 Myr are of interest for the ESS (discussed in Section 3). Therefore, a more statistically significant value may be higher than the peak value reported in the table, probably around 900 Myr. For the other ratios, the values of the mean lives at numerator and denominator in the equation above are so different that is always within 2% of the of the short-lived isotope. A statistical analysis of the uncertainties would not affect those values, although we will analyse statistically the impact of the uncertainties on all the mean lives when we derive timescales in Section 3. |
2 | https://zenodo.org/record/4446099#.YgKVxWAo-mk (accessed on 15 June 2022). |
3 | https://zenodo.org/record/4456126#.YgKV0GAo-mk (accessed on 15 June 2022). |
4 | This is calculated using the residual method, where the r-process abundance is the total solar abundance of Xe minus the predicted s-process abundance. This method cannot be applied to Cm and Pu as these isotopes do not have one daughter stable nucleus produced exclusively by their decay. |
5 | When we also consider the difference due to fact that while I is stable, U will also decay. For time intervals of the order of 100–200 Myr, this corresponds to a small effect on the Cm/U ratio of roughly 10–20%. |
6 | Since (see detailed discussion in [30]) for our purposes here will be considered equivalent to . |
7 | This lower limit is defined such that for I and Cm, but it is close to the 57.5 Myr value defined by for Pu. |
8 | Note that the evaluation of the ESS ratio of I/Cm depends on the time from the last event itself, given that its is variable due to the uncertainties in and , as discussed in Section 1. The ESS values reported in Table 1 and used here were calculated assuming a time from last event in the range 100–200 Myr and composing all the uncertainties, as discussed in detail in the supplementary material of Paper I. A more precise analysis would instead use the range of times from the last event for each model solution to derive the range of corresponding ESS I/Cm ratios, and find if the model matches such a specific range. However, given that, as noted above, most solutions provide times in the 100–200 Myr range, this more accurate treatment would not change our results. |
References
- Lugaro, M.; Ott, U.; Kereszturi, Á. Radioactive nuclei from cosmochronology to habitability. Progr. Part. Nucl. Phys. 2018, 102, 1–47. [Google Scholar] [CrossRef]
- Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; et al. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nat. Commun. 2015, 6, 5956. [Google Scholar] [CrossRef]
- Wallner, A.; Froehlich, M.B.; Hotchkis, M.A.C.; Kinoshita, N.; Paul, M.; Martschini, M.; Pavetich, S.; Tims, S.G.; Kivel, N.; Schumann, D.; et al. 60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae. Science 2021, 372, 742–745. [Google Scholar] [CrossRef]
- Ratzel, U.; Arlandini, C.; Käppeler, F.; Couture, A.; Wiescher, M.; Reifarth, R.; Gallino, R.; Mengoni, A.; Travaglio, C. Nucleosynthesis at the termination point of the s process. Phys. Rev. C 2004, 70, 065803. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Lugaro, M.; Heger, A.; Osrin, D.; Goriely, S.; Zuber, K.; Karakas, A.I.; Gibson, B.K.; Doherty, C.L.; Lattanzio, J.C.; Ott, U. Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter. Science 2014, 345, 650–653. [Google Scholar] [CrossRef] [Green Version]
- Hotokezaka, K.; Piran, T.; Paul, M. Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nat. Phys. 2015, 11, 1042–1044. [Google Scholar] [CrossRef]
- Côté, B.; Eichler, M.; Yagüe López, A.; Vassh, N.; Mumpower, M.R.; Világos, B.; Soós, B.; Arcones, A.; Sprouse, T.M.; Surman, R.; et al. 129I and 247Cm in meteorites constrain the last astrophysical source of solar r-process elements. Science 2021, 371, 945–948. [Google Scholar] [CrossRef]
- Wang, X.; Clark, A.M.; Ellis, J.; Ertel, A.F.; Fields, B.D.; Fry, B.J.; Liu, Z.; Miller, J.A.; Surman, R. r-Process Radioisotopes from Near-Earth Supernovae and Kilonovae. Astrophys. J. 2021, 923, 219. [Google Scholar] [CrossRef]
- Wang, X.; Clark, A.M.; Ellis, J.; Ertel, A.F.; Fields, B.D.; Fry, B.J.; Liu, Z.; Miller, J.A.; Surman, R. Future radioisotope measurements to clarify the origin of deep-ocean 244Pu. arXiv 2021, arXiv:astro-ph.HE/2112.09607. [Google Scholar]
- Yagüe López, A.; Côté, B.; Lugaro, M. Monte Carlo Investigation of the Ratios of Short-lived Radioactive Isotopes in the Interstellar Medium. Astrophys. J. 2021, 915, 128. [Google Scholar] [CrossRef]
- Gilmour, J.D.; Pravdivtseva, O.V.; Busfield, A.; Hohenberg, C.M. The I-Xe chronometer and the early solar system. Meteorit. Planet. Sci. 2006, 41, 19–31. [Google Scholar] [CrossRef]
- Tissot, F.L.H.; Dauphas, N.; Grossman, L. Origin of uranium isotope variations in early solar nebula condensates. Sci. Adv. 2016, 2, e1501400. [Google Scholar] [CrossRef] [Green Version]
- Wasserburg, G.J.; Huneke, J.C.; Burnett, D.S. Correlation Between Fission Tracks and Fission-Type Xenon from an Extinct Radioactivity. Phys. Rev. Lett. 1969, 22, 1198–1201. [Google Scholar] [CrossRef] [Green Version]
- Marti, K.; Lugmair, G.W.; Scheinin, N.B. Sm-Nd-Pu Systematics in the Early Solar System. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 14–18 March 1977; Volume 8, p. 619. Available online: https://articles.adsabs.harvard.edu/full/1977LPI.....8..619M (accessed on 15 June 2022).
- Podosek, F.A.; Lewis, R.S. 129129I and 244244Pu abundances in white inclusions of the Allende meteorite. Earth Planet. Sci. Lett. 1972, 15, 101–109. [Google Scholar] [CrossRef]
- Lugmair, G.W.; Marti, K. Sm sbnd Nd sbnd Pu timepieces in the Angra dos Reis meteorite. Earth Planet. Sci. Lett. 1977, 35, 273–284. [Google Scholar] [CrossRef]
- Shukolyukov, A.; Begemann, F. Pu-Xe dating of eucrites. Geochim. Cosmochim. Acta 1996, 60, 2453–2471. [Google Scholar] [CrossRef]
- Hudson, G.B.; Kennedy, B.M.; Podosek, F.A.; Hohenberg, C.M. The early solar system abundance of Pu-244 as inferred from the St. Severin chondrite. In Lunar and Planetary Science Conference Proceedings; Ryder, G., Sharpton, V.L., Eds.; Cambridge University Press: Houston, TX, USA, 1989; Volume 19, pp. 547–557. [Google Scholar]
- Connelly, J.N.; Bizzarro, M.; Krot, A.N.; Nordlund, A.; Wielandt, D.; Ivanova, M.A. The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science 2012, 338, 651–655. [Google Scholar] [CrossRef]
- Turner, G.; Busfield, A.; Crowther, S.A.; Harrison, M.; Mojzsis, S.J.; Gilmour, J. Pu Xe, U Xe, U Pb chronology and isotope systematics of ancient zircons from Western Australia. Earth Planet. Sci. Lett. 2007, 261, 491–499. [Google Scholar] [CrossRef]
- Trueman, T.C.L.; Côté, B.; Yagüe López, A.; den Hartogh, J.; Pignatari, M.; Soós, B.; Karakas, A.I.; Lugaro, M. Galactic Chemical Evolution of Radioactive Isotopes with an s-process Contribution. Astrophys. J. 2022, 924, 10. [Google Scholar] [CrossRef]
- Eichler, M.; Arcones, A. Detailed Abundances Based on Different Nuclear Physics for Theoretical R-Process Scenarios. 2021. Available online: https://zenodo.org/record/4446099#.YrKSFSdBxPY (accessed on 15 June 2022).
- Winteler, C.; Käppeli, R.; Perego, A.; Arcones, A.; Vasset, N.; Nishimura, N.; Liebendörfer, M.; Thielemann, F.K. Magnetorotationally Driven Supernovae as the Origin of Early Galaxy r-process Elements? Astrophys. J. Lett. 2012, 750, L22. [Google Scholar] [CrossRef] [Green Version]
- Vassh, N.; Mumpower, M.R.; Sprouse, T.M.; Surman, R. r-Process Abundances in Neutron-Rich Merger Ejecta Given Different Theoretical Nuclear Physics Inputs. 2021. Available online: https://zenodo.org/record/4456126#.YrKSuCdBxPY (accessed on 15 June 2022).
- Mumpower, M.R.; Kawano, T.; Sprouse, T.M.; Vassh, N.; Holmbeck, E.M.; Surman, R.; Möller, P. β-delayed Fission in r-process Nucleosynthesis. Astrophys. J. 2018, 869, 14. [Google Scholar] [CrossRef] [Green Version]
- Eichler, M.; Sayar, W.; Arcones, A.; Rauscher, T. Probing the Production of Actinides under Different r-process Conditions. Astrophys. J. 2019, 879, 47. [Google Scholar] [CrossRef]
- Freiburghaus, C.; Rosswog, S.; Thielemann, F.K. R-Process in Neutron Star Mergers. Astrophys. J. 1999, 525, L121–L124. [Google Scholar] [CrossRef]
- Côté, B.; Lugaro, M.; Reifarth, R.; Pignatari, M.; Világos, B.; Yagüe, A.; Gibson, B.K. Galactic Chemical Evolution of Radioactive Isotopes. Astrophys. J. 2019, 878, 156. [Google Scholar] [CrossRef] [Green Version]
- Côté, B.; Yagüe, A.; Világos, B.; Lugaro, M. Stochastic Chemical Evolution of Radioactive Isotopes with a Monte Carlo Approach. Astrophys. J. 2019, 887, 213. [Google Scholar] [CrossRef]
- Banerjee, P.; Wu, M.R.; Jeena, S.K. Constraints on R-process nucleosynthesis from 129I and 247Cm in the early solar system. Mon. Not. R. Astron. Soc. 2022, 512, 4948–4960. [Google Scholar] [CrossRef]
- Amend, B.; Zrake, J.; Hartmann, D.H. R-process Rain from Binary Neutron Star Mergers in the Galactic Halo. arXiv 2022, arXiv:2205.03913. [Google Scholar]
Ratio | ESS Ratio | , , | |||
---|---|---|---|---|---|
I/I | 22.6 | stable | 22.6 | ( | 1.6, 2.3, 5.7 |
Pu/U | 115 | 6447 | 117 | ( | 1.5, 1.9, 4.1 |
Cm/U | 22.5 | 1016 | 23.0 | ( | 1.1, 1.2, 1.8 |
I/Cm | 22.6 | 22.5 | 270 (100–3000) | 1, 1, 1 |
Site Label | Site Label (Paper I) | Mass Ejected (M) | Nuclear Label | Nuclear Label (Paper I) |
---|---|---|---|---|
R1010 | NS-NS merger dyn. ejecta (R) | Dhf | DZ10 | |
R1450 | NS-BH merger dyn. ejecta (R) | Jhf | FRDM | |
Bs125 | NS-NS merger dyn. ejecta (B) | Jmhf | FRDM(D3C*) | |
FMdef | NS-NS merger disk ejecta 1 | 1 | Panov | |
FMs6 | NS-NS merger disk ejecta 2 | 2 | K & T | |
FMv0.10 | NS-NS merger disk ejecta 3 | 4 | ABLA07 | |
Wmhd | MR SN |
Regime | (Myr) | Solutions | Times (Myr) |
---|---|---|---|
III for I, Cm, and Pu | > 345 | 7 WINNET | ≃ 100–200 |
III for I and Cm and II for Pu | 68 < < 345 | ||
II for I and Cm and I for Pu, Pd, and Hf | 11 < < 68, < 5 | 32 WINNET , 6 PRISM , 0 for | ≃ 80–130, ≃ 9–16 |
OR III for Pd and Hf | 11 < < 68, > 30 | 20 more than above | ≃ 25, > 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugaro, M.; Yagüe López, A.; Soós, B.; Côté, B.; Pető, M.; Vassh, N.; Wehmeyer, B.; Pignatari, M. Origin of Plutonium-244 in the Early Solar System. Universe 2022, 8, 343. https://doi.org/10.3390/universe8070343
Lugaro M, Yagüe López A, Soós B, Côté B, Pető M, Vassh N, Wehmeyer B, Pignatari M. Origin of Plutonium-244 in the Early Solar System. Universe. 2022; 8(7):343. https://doi.org/10.3390/universe8070343
Chicago/Turabian StyleLugaro, Maria, Andrés Yagüe López, Benjámin Soós, Benoit Côté, Mária Pető, Nicole Vassh, Benjamin Wehmeyer, and Marco Pignatari. 2022. "Origin of Plutonium-244 in the Early Solar System" Universe 8, no. 7: 343. https://doi.org/10.3390/universe8070343