Group II Oxide Grains: How Massive Are Their AGB Star Progenitors?
<p>Left panel: oxygen isotopic ratios in presolar oxide grains. Labels and colors identify the grains belonging to different groups according to Nittler et al. [<a href="#B15-universe-07-00175" class="html-bibr">15</a>]. The compositions and the stellar origins of group 1 and 2 grains are discussed in detail in the paper. Group 3 grains are supposed to reflect in their isotopic mix the evolution of the oxygen isotope abundances in the Galaxy, forming in low metallicity stars [<a href="#B21-universe-07-00175" class="html-bibr">21</a>], while group 4 grains likely formed in supernovae [<a href="#B22-universe-07-00175" class="html-bibr">22</a>]. Right panel: <math display="inline"><semantics> <msup> <mrow/> <mn>18</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O vs. <math display="inline"><semantics> <msup> <mrow/> <mn>26</mn> </msup> </semantics></math>Al<math display="inline"><semantics> <msup> <mo>/</mo> <mn>27</mn> </msup> </semantics></math>Al isotopic ratios recorded in grains of the same sample. Different colors identify grains belonging the 4 groups. The black dashed lines indicate the solar values for the O and Al isotopic ratios.</p> "> Figure 2
<p>(<b>A</b>) Oxygen isotopic ratios in presolar silicate grains, from the WUSTL database [<a href="#B14-universe-07-00175" class="html-bibr">14</a>] (orange squared symbols). Labels and colors identify grains belonging to different groups as it is for oxide grains (cyan dots) in <a href="#universe-07-00175-f001" class="html-fig">Figure 1</a>. Silicate grains overlap to the oxide one in the oxygen three-isotope plot. (<b>B</b>) Comparison between the oxygen isotopic ratios of oxide grains (the same of <a href="#universe-07-00175-f001" class="html-fig">Figure 1</a>) and the abundances measured in AGB stars by (Hinkle et al. [<a href="#B23-universe-07-00175" class="html-bibr">23</a>] open red stars) and (Lebzelter et al. [<a href="#B24-universe-07-00175" class="html-bibr">24</a>] full red stars).</p> "> Figure 3
<p>The <math display="inline"><semantics> <msup> <mrow/> <mn>18</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O isotopic ratio as a function of the <math display="inline"><semantics> <msup> <mrow/> <mn>26</mn> </msup> </semantics></math>Al<math display="inline"><semantics> <msup> <mo>/</mo> <mn>27</mn> </msup> </semantics></math>Al one for the same models and grain data as in <a href="#universe-07-00175-f003" class="html-fig">Figure 3</a>. Horizontal and vertical dashed lines represent the solar values for the <math display="inline"><semantics> <msup> <mrow/> <mn>18</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O and the <math display="inline"><semantics> <msup> <mrow/> <mn>26</mn> </msup> </semantics></math>Al<math display="inline"><semantics> <msup> <mo>/</mo> <mn>27</mn> </msup> </semantics></math>Al isotopic ratios. Panel (<b>A</b>) refers to calculations run with reaction rates of set A and Panel (<b>B</b>) to calculations run with the set B.</p> "> Figure 4
<p>The same as <a href="#universe-07-00175-f004" class="html-fig">Figure 4</a> but for the <math display="inline"><semantics> <msup> <mrow/> <mn>17</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O isotopic ratio versus the <math display="inline"><semantics> <msup> <mrow/> <mn>26</mn> </msup> </semantics></math>Al<math display="inline"><semantics> <msup> <mo>/</mo> <mn>27</mn> </msup> </semantics></math>Al one. Dashed lines mark to the solar values for <math display="inline"><semantics> <msup> <mrow/> <mn>17</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O and <math display="inline"><semantics> <msup> <mrow/> <mn>26</mn> </msup> </semantics></math>Al<math display="inline"><semantics> <msup> <mo>/</mo> <mn>27</mn> </msup> </semantics></math>Al. Panel (<b>A</b>) refers to calculations run with reaction rates of set A and Panel (<b>B</b>) to calculations run with the set B.</p> "> Figure 5
<p>The <math display="inline"><semantics> <msup> <mrow/> <mn>17</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O equilibrium values as a function of temperature (in units of <math display="inline"><semantics> <msup> <mn>10</mn> <mn>9</mn> </msup> </semantics></math> K) computed using the reaction rates of set A (red curve) and set B (black curve). We report the calculation results only for the rate recommended values, being these former the inputs employed for nucleosynthesis calculation. The cyan histogram marks the <math display="inline"><semantics> <msup> <mrow/> <mn>17</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O distribution in group 2 oxide grains.</p> "> Figure 6
<p>The <math display="inline"><semantics> <msup> <mrow/> <mn>18</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O vs. <math display="inline"><semantics> <msup> <mrow/> <mn>17</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O isotopic ratios in the envelope of solar metallicity stars at FDU (black solid line and markers) with mass from 1 to 2 M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math> and at SDU for masses from 4.5 to 6 M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math>, as indicated by the labels. Light cyan points are group 1 oxide grains, while darker dots are those of group 2. The red curves descending from the 1.2 M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math>, and the 1.5 M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math> markers refer to magnetic mixing model results for AGB stars for different values of <span class="html-italic">k</span> (see the text for details). The maximum modification of the envelope composition that can be produced by CBP during the RGB phase is indicated by the gray curve. Red curves starting from 4.5, 5, and 6 M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math> SDU abundances deal with the evolution of <math display="inline"><semantics> <msup> <mrow/> <mn>17</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O and <math display="inline"><semantics> <msup> <mrow/> <mn>18</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O isotopic ratios in the envelope of AGB stars affected by HBB. Panel (<b>A</b>) refers to calculations run with reaction rates of set A and Panel (<b>B</b>) to calculations run with the set B. The dashed lines mark the <math display="inline"><semantics> <msup> <mrow/> <mn>17</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O and the <math display="inline"><semantics> <msup> <mrow/> <mn>18</mn> </msup> </semantics></math>O<math display="inline"><semantics> <msup> <mo>/</mo> <mn>16</mn> </msup> </semantics></math>O solar values.</p> ">
Abstract
:1. Introduction
2. Oxygen Isotopic Ratios Observed in the Spectra of Present-Day AGB Stars
3. O + p Reaction Rates and the OO Ratio as Probe of the H-Burning Temperature
4. Deep Mixing and the Formation of Oxide Grains in Low Mass AGB Stars
- In the OO vs. OO plane, several grains occupy a forbidden area (at OO < 0.0005 and OO < 0.0015) that is not accessible by CBP nor by HBB models.
- To account for the highest Al/Al values found in oxide grains, the CBP has to reach the most energetic layers of the H-burning shell, but this would imply an appreciable feedback on the stellar energy balance.
5. Hot Bottom Burning in Intermediate Mass Stars
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1. | Note that no extra-mixing mechanism is applied to IM-AGBs. |
2. | “http://presolar.wustl.edu” (accessed on 11 May 2020) and Hynes and Gyngard [14]. |
3. | A dredge-up episode occurs whenever, following a temporary exhaustion of nuclear burning, the convection extends down from the stellar envelop to the internal layers that have been affected by the burning. As a result, the nucleosynthesis products are mixed into the envelope whose composition is, therefore, modified. The FDU occurs just before a star starts to climb the Red Giant Branch, and the Second Dredge-up (SDU) takes place in objects more massive than M at the very beginning of the AGB phase, while the Third Dredge-up (TDU) occurs many times during the AGB phase at the exhaustion of each thermal pulse. |
References
- Busso, M.; Gallino, R.; Wasserburg, G.J. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 239–309. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef] [Green Version]
- Straniero, O.; Gallino, R.; Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311–339. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef] [Green Version]
- Takigawa, A.; Kim, T.H.; Igami, Y.; Umemoto, T.; Tsuchiyama, A.; Koike, C.; Matsuno, J.; Watanabe, T. Formation of Transition Alumina Dust around Asymptotic Giant Branch Stars: Condensation Experiments using Induction Thermal Plasma Systems. Astrophys. J. Lett. 2020, 878, L7. [Google Scholar] [CrossRef]
- Onaka, T.; Nakada, Y.; Tanabe, T.; Sakata, A.; Wada, S. A Quenched Carbonaceous Composite / QCC / Grain Model for the Interstellar 220-NM Extinction Hump. Astrophys. Space Sci. 1986, 118, 411–413. [Google Scholar] [CrossRef]
- Dell’Agli, F.; García-Hernández, D.A.; Rossi, C.; Ventura, P.; Di Criscienzo, M.; Schneider, R. On the alumina dust production in the winds of O-rich asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2014, 441, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Ventura, P.; Dell’Agli, F.; Lugaro, M.; Romano, D.; Tailo, M.; Yagüe, A. Gas and dust from metal-rich AGB stars. Astron. Astrophys. 2020, 641, A103. [Google Scholar] [CrossRef]
- Zinner, E. Presolar Grains. In Meteorites and Cosmochemical Processes; Davis, A.M., Ed.; Elsvier: London, UK, 2014; pp. 181–213. [Google Scholar]
- Boothroyd, A.I.; Sackmann, I.J.; Wasserburg, G.J. Predictions of Oxygen Isotope Ratios in Stars and of Oxygen-rich Interstellar Grains in Meteorites. Astrophys. J. Lett. 1994, 430, L77. [Google Scholar] [CrossRef] [Green Version]
- Boothroyd, A.I.; Sackmann, I.J.; Wasserburg, G.J. Hot Bottom Burning in Asymptotic Giant Branch Stars and Its Effect on Oxygen Isotopic Abundances. Astrophys. J. Lett. 1995, 442, L21. [Google Scholar] [CrossRef] [Green Version]
- Ventura, P.; D’Antona, F. Full computation of massive AGB evolution. I. The large impact of convection on nucleosynthesis. Astron. Astrophys. 2005, 431, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Wasserburg, G.J.; Boothroyd, A.I.; Sackmann, I.J. Deep Circulation in Red Giant Stars: A Solution to the Carbon and Oxygen Isotope Puzzles? Astrophys. J. Lett. 1995, 447, L37. [Google Scholar] [CrossRef] [Green Version]
- Hynes, K.M.; Gyngard, F. The Presolar Grain Database. Lunar and Planetary Science Conference, 2009, Volume 40, p. 1198. Available online: http://presolar.wustl.edu/~pgd (accessed on 1 November 2020).
- Nittler, L.R.; Alexander, O.; Gao, X.; Walker, R.M.; Zinner, E. Stellar Sapphires: The Properties and Origins of Presolar Al2O3 in Meteorites. Astrophys. J. 1997, 483, 475–495. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.J.; Lambert, D.L. Oxygen isotopic abundances in the atmospheres of seven red giant stars. Astrophys. J. 1984, 285, 674–682. [Google Scholar] [CrossRef]
- Abia, C.; Palmerini, S.; Busso, M.; Cristallo, S. Carbon and oxygen isotopic ratios in Arcturus and Aldebaran. Constraining the parameters for non-convective mixing on the red giant branch. Astron. Astrophys. 2012, 548, A55. [Google Scholar] [CrossRef] [Green Version]
- Leitner, J.; Hoppe, P. A new population of dust from stellar explosions among meteoritic stardust. Nat. Astron. 2019, 3, 725–729. [Google Scholar] [CrossRef]
- Gyngard, F.; Nittler, L.; Zinner, E.; Jose, J. Oxygen Rich Stardust Grains from Novae. PoS: Proceedings of the 11th Symposium on Nuclei in the Cosmos, 2010, p. 141. Available online: http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=100 (accessed on 11 May 2021).
- Bose, M.; Floss, C.; Stadermann, F.J.; Stroud, R.M.; Speck, A.K. Circumstellar and interstellar material in the CO3 chondrite ALHA77307: An isotopic and elemental investigation. Geochim. Cosmochim. Acta 2012, 93, 77–101. [Google Scholar] [CrossRef]
- Nittler, L.R. Galactic Chemical Evolution, Presolar Grains, and the Solar 18O/17O Ratio. Meteorit. Planet. Sci. 2009, 72, 5282. [Google Scholar]
- Choi, B.G.; Huss, G.R.; Wasserburg, G.J.; Gallino, R. Presolar Corundum and Spinel in Ordinary Chondrites: Origins from AGB Stars and a Supernova. Science 1998, 282, 1284. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, K.H.; Lebzelter, T.; Straniero, O. Carbon and Oxygen Isotopic Ratios for Nearby Miras. Astrophys. J. 2016, 825, 38. [Google Scholar] [CrossRef] [Green Version]
- Lebzelter, T.; Hinkle, K.H.; Straniero, O.; Lambert, D.L.; Pilachowski, C.A.; Nault, K.A. Carbon and Oxygen Isotopic Ratios. II. Semiregular Variable M Giants. Astrophys. J. 2019, 886, 117. [Google Scholar] [CrossRef]
- Lugaro, M.; Karakas, A.I.; Bruno, C.G.; Aliotta, M.; Nittler, L.R.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Caciolli, A.; et al. Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O. Nat. Astron. 2017, 1, 0027. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, S.; Trippella, O.; Busso, M. A deep mixing solution to the aluminum and oxygen isotope puzzles in pre-solar grains. Mon. Not. R. Astron. Soc. 2017, 467, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, S.; Sergi, M.L.; La Cognata, M.; Lamia, L.; Pizzone, R.G.; Spitaleri, C. The RGB and AGB Star Nucleosynthesis in Light of the Recent 17O(p, α)14N and 18O(p, α)15N Reaction-rate Determinations. Astrophys. J. 2013, 764, 128. [Google Scholar] [CrossRef] [Green Version]
- Tumino, A.; Spitaleri, C.; La Cognata, M.; Cherubini, S.; Guardo, G.L.; Gulino, M.; Indelicato, I.; Lamia, L.; Oliva, A.; Pizzone, R.G.; et al. Indirect methods constraining nuclear capture—The Trojan Horse Method. J. Phys. Conf. Ser. 2020, 1668, 012045. [Google Scholar] [CrossRef]
- Broggini, C.; LUNA Collaboration. The LUNA experiment: Past and future. European Physical Journal Web of Conferences. In Proceedings of the 9th European Summer School on Experimental Nuclear Astrophysics, Santa Tecla, Catania, Italy, 17–24 September 2017; Volume 184. id. 01003. [Google Scholar] [CrossRef]
- Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A. Charged-particle thermonuclear reaction rates: III. Nuclear physics input. Nucl. Phys. A 2010, 841, 251–322. [Google Scholar] [CrossRef] [Green Version]
- Sergi, M.L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R.G.; Rapisarda, G.G.; Tang, X.D.; Bucher, B.; Couder, M.; Davies, P.; et al. Improvement of the high-accuracy 17O(p,α)14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis. Phys. Rev. C 2015, 91, 065803. [Google Scholar] [CrossRef] [Green Version]
- Bruno, C.G.; Scott, D.A.; Aliotta, M.; Formicola, A.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; et al. Improved Direct Measurement of the 64.5 keV Resonance Strength in the 17O (p,α)14N Reaction at LUNA. Phys. Rev. Lett. 2016, 117, 142502. [Google Scholar] [CrossRef] [Green Version]
- Di Leva, A.; Scott, D.A.; Caciolli, A.; Formicola, A.; Strieder, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Broggini, C.; Corvisiero, P.; et al. Underground study of the O17(p,γ)F18 reaction relevant for explosive hydrogen burning. Phys. Rev. C 2014, 89, 015803. [Google Scholar] [CrossRef]
- La Cognata, M.; Spitaleri, C.; Mukhamedzhanov, A.M. Effect of High-energy Resonances on the 18O(p, α)15N Reaction Rate at AGB and Post-AGB Relevant Temperatures. Astrophys. J. 2010, 723, 1512–1522. [Google Scholar] [CrossRef]
- Best, A.; Pantaleo, F.R.; Boeltzig, A.; Imbriani, G.; Aliotta, M.; Balibrea-Correa, J.; Bemmerer, D.; Broggini, C.; Bruno, C.G.; Buompane, R.; et al. Cross section of the reaction 18O(p,γ)19F at astrophysical energies: The 90 keV resonance and the direct capture component. Phys. Lett. B 2019, 797, 134900. [Google Scholar] [CrossRef]
- Straniero, O.; Imbriani, G.; Strieder, F.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Corvisiero, P.; Costantini, H.; Cristallo, S.; DiLeva, A.; et al. Impact of a Revised 25Mg(p, γ)26Al Reaction Rate on the Operation of the Mg-Al Cycle. Astrophys. J. 2013, 763, 100. [Google Scholar] [CrossRef] [Green Version]
- Palmerini, S.; La Cognata, M.; Cristallo, S.; Busso, M. Deep Mixing in Evolved Stars. I. The Effect of Reaction Rate Revisions from C to Al. Astrophys. J. 2011, 729, 3. [Google Scholar] [CrossRef] [Green Version]
- Iliadis, C.; Angulo, C.; Descouvemont, P.; Lugaro, M.; Mohr, P. New reaction rate for O16(p,γ)F17 and its influence on the oxygen isotopic ratios in massive AGB stars. Phys. Rev. C 2008, 77, 045802. [Google Scholar] [CrossRef]
- Straniero, O.; Bruno, C.G.; Aliotta, M.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; Ciani, G.F.; et al. The impact of the revised 17O(p, α)14N reaction rate on 17O stellar abundances and yields. Astron. Astrophys. 2017, 598, A128. [Google Scholar] [CrossRef] [Green Version]
- Imbriani, G.; Costantini, H.; Formicola, A.; Vomiero, A.; Angulo, C.; Bemmerer, D.; Bonetti, R.; Broggini, C.; Confortola, F.; Corvisiero, P.; et al. S-factor of 14N(p,γ)15O at astrophysical energies☆. Eur. Phys. J. A 2005, 25, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Nollett, K.M.; Busso, M.; Wasserburg, G.J. Cool Bottom Processes on the Thermally Pulsing Asymptotic Giant Branch and the Isotopic Composition of Circumstellar Dust Grains. Astrophys. J. 2003, 582, 1036–1058. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Straniero, O.; Abia, C.; Gallino, R.; La Cognata, M. On the Need for Deep-mixing in Asymptotic Giant Branch Stars of Low Mass. Astrophys. J. Lett. 2010, 717, L47–L51. [Google Scholar] [CrossRef]
- Palacios, A.; Charbonnel, C.; Talon, S.; Siess, L. Rotational mixing in low-mass stars. II. Self-consistent models of Pop II RGB stars. Astron. Astrophys. 2006, 453, 261–278. [Google Scholar] [CrossRef]
- Denissenkov, P.A.; Pinsonneault, M.; MacGregor, K.B. Magneto-Thermohaline Mixing in Red Giants. Astrophys. J. 2009, 696, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Eggleton, P.P.; Dearborn, D.S.P.; Lattanzio, J.C. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis. Science 2006, 314, 1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmerini, S.; Cristallo, S.; Busso, M.; Abia, C.; Uttenthaler, S.; Gialanella, L.; Maiorca, E. Deep Mixing in Evolved Stars. II. Interpreting Li Abundances in Red Giant Branch and Asymptotic Giant Branch Stars. Astrophys. J. 2011, 741, 26. [Google Scholar] [CrossRef] [Green Version]
- Denissenkov, P.A.; Merryfield, W.J. Thermohaline Mixing: Does it Really Govern the Atmospheric Chemical Composition of Low-mass Red Giants? Astrophys. J. Lett. 2011, 727, L8. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Wasserburg, G.J.; Nollett, K.M.; Calandra, A. Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms? Astrophys. J. 2007, 671, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C.; Busso, M. Magnetohydrodynamics and Deep Mixing in Evolved Stars. I. Two- and Three-dimensional Analytical Models for the Asymptotic Giant Branch. Astrophys. J. 2014, 787, 141. [Google Scholar] [CrossRef] [Green Version]
- Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E.; Nucci, M.C. s-Processing in AGB Stars Revisited. II. Enhanced 13C Production through MHD-induced Mixing. Astrophys. J. 2016, 818, 125. [Google Scholar] [CrossRef] [Green Version]
- Vescovi, D.; Cristallo, S.; Busso, M.; Liu, N. Magnetic-buoyancy-induced Mixing in AGB Stars: Presolar SiC Grains. Astrophys. J. Lett. 2020, 897, L25. [Google Scholar] [CrossRef]
- Iben, I.J. Thermal pulses: p-capture, alpha -capture, s-process nucleosynthesis; and convective mixing in a star of intermediate mass. Astrophys. J. 1975, 196, 525–547. [Google Scholar] [CrossRef]
- Boothroyd, A.I.; Sackmann, I.J. Breakdown of the Core Mass–Luminosity Relation at High Luminosities on the Asymptotic Giant Branch. Astrophys. J. Lett. 1992, 393, L21. [Google Scholar] [CrossRef]
- D’Antona, F.; Mazzitelli, I. Hot Bottom Burning in Asymptotic Giant Branch Stars and the Turbulent Convection Model. Astrophys. J. 1996, 470, 1093. [Google Scholar] [CrossRef]
- Ventura, P.; D’Antona, F. Toward a Working Model for the Abundance Variations in Stars within Globular Clusters. Astrophys. J. Lett. 2005, 635, L149–L152. [Google Scholar] [CrossRef]
- Mazzitelli, I.; D’Antona, F.; Ventura, P. Full spectrum of turbulence convective mixing. II. Lithium production in AGB stars. Astron. Astrophys. 1999, 348, 846–860. [Google Scholar]
- Piersanti, L.; Straniero, O.; Cirillo, M. On the modeling of AGB stars. 2021; in preparation. [Google Scholar]
- Piersanti, L.; Straniero, O.; Cristallo, S. A method to derive the absolute composition of the Sun, the solar system, and the stars. Astron. Astrophys. 2007, 462, 1051–1062. [Google Scholar] [CrossRef]
- Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Domínguez, I.; Lederer, M.T. Evolution, Nucleosynthesis, and Yields of Low-Mass Asymptotic Giant Branch Stars at Different Metallicities. Astrophys. J. 2009, 696, 797–820. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database. Astrophys. J. Suppl. Ser. 2011, 197, 17. [Google Scholar] [CrossRef] [Green Version]
- Piersanti, L.; Cristallo, S.; Straniero, O. The Effects of Rotation on s-process Nucleosynthesis in Asymptotic Giant Branch Stars. Astrophys. J. 2013, 774, 98. [Google Scholar] [CrossRef] [Green Version]
- Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface. Astrophys. J. Suppl. Ser. 2015, 219, 40. [Google Scholar] [CrossRef]
- Karakas, A.I. Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 2010, 403, 1413–1425. [Google Scholar] [CrossRef] [Green Version]
- Ritter, C.; Herwig, F.; Jones, S.; Pignatari, M.; Fryer, C.; Hirschi, R. NuGrid stellar data set - II. Stellar yields from H to Bi for stellar models with MZAMS = 1-25 M⊙ and Z = 0.0001-0.02. Mon. Not. R. Astron. Soc. 2018, 480, 538–571. [Google Scholar] [CrossRef] [Green Version]
- Vassiliadis, E.; Wood, P.R. Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss. Astrophys. J. 1993, 413, 641. [Google Scholar] [CrossRef]
- Doherty, C.L.; Siess, L.; Lattanzio, J.C.; Gil-Pons, P. Super asymptotic giant branch stars. I - Evolution code comparison. Mon. Not. R. Astron. Soc. 2010, 401, 1453–1464. [Google Scholar] [CrossRef] [Green Version]
- Ventura, P.; D’Antona, F.; Mazzitelli, I. The ATON 3.1 stellar evolutionary code. A version for asteroseismology. Astrophys. Space Sci. 2008, 316, 93–98. [Google Scholar] [CrossRef]
- Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F.X.; Ritter, C.; Heger, A.; Jones, S.; et al. NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01. Astrophys. J. Suppl. Ser. 2016, 225, 24. [Google Scholar] [CrossRef]
- Battino, U.; Tattersall, A.; Lederer-Woods, C.; Herwig, F.; Denissenkov, P.; Hirschi, R.; Trappitsch, R.; den Hartogh, J.W.; Pignatari, M.; NuGrid Collaboration. NuGrid stellar data set-III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z= 0.01, Z = 0.02, and Z = 0.03. Mon. Not. R. Astron. Soc. 2019, 489, 1082–1098. [Google Scholar] [CrossRef]
Reaction | Set A | Set B |
---|---|---|
O(p,)F | Iliadis et al. [30] | Iliadis et al. [30] |
O(p,)N | Sergi et al. [31] | Bruno et al. [32] |
O(p,)F | Sergi et al. [31] | Di Leva et al. [33] |
O(p,)N | La Cognata et al. [34] | Bruno et al. [32] |
O(p,)F | Iliadis et al. [30] | Best et al. [35] |
Mg(p,)Al | Straniero et al. [36] | Straniero et al. [36] |
Al(p,)Si | Iliadis et al. [30] | Iliadis et al. [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmerini, S.; Cristallo, S.; Piersanti, L.; Vescovi, D.; Busso, M. Group II Oxide Grains: How Massive Are Their AGB Star Progenitors? Universe 2021, 7, 175. https://doi.org/10.3390/universe7060175
Palmerini S, Cristallo S, Piersanti L, Vescovi D, Busso M. Group II Oxide Grains: How Massive Are Their AGB Star Progenitors? Universe. 2021; 7(6):175. https://doi.org/10.3390/universe7060175
Chicago/Turabian StylePalmerini, Sara, Sergio Cristallo, Luciano Piersanti, Diego Vescovi, and Maurizio Busso. 2021. "Group II Oxide Grains: How Massive Are Their AGB Star Progenitors?" Universe 7, no. 6: 175. https://doi.org/10.3390/universe7060175