Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem
<p>Flow diagram of PSO, PSO-VNS and PSO-VNS-SA.</p> "> Figure 2
<p>Performance comparison of the three algorithms for the 20-Job.</p> "> Figure 3
<p>Performance comparison of the three algorithms for the 50-Job.</p> "> Figure 4
<p>Performance comparison of the three algorithms for the 100-Job Taillard’s instances.</p> "> Figure 5
<p>Performance comparison of the RPD values of the three PSO algorithms for the 200- and 500-Job Taillard’s instances.</p> "> Figure 6
<p>Comparison of HPSO with HGA and HGSA heuristics for 120 Taillard’s instances.</p> "> Figure 7
<p>Comparison of HPSO with hybrid GA-based heuristics.</p> "> Figure 8
<p>Comparison of HPSO with CLS, NEHT, and three other hybridized PSO techniques.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- (1)
- Formulation of an optimization model for the PFSP.
- (2)
- Development of standard PSO.
- (3)
- Hybridization of standard PSO with VNS.
- (4)
- Further hybridization of PSO—VNS with SA.
3.1. Optimization Model
- Each job (j) must start its next operation on the next machine (i + 1) in sequence after its previous operation on the previous machine (i) is completed.
- Each job (j) has an operation scheduled on each machine (i), i.e., each job must visit each machine only once
- Jobs must not overtake each other in between machines, and the permutation remains the same on each subsequent machine.
- = Completion time of the last job (j = L) in a permutation on machine1.
- = Start time of the last job on the next machine.
- = Waiting time of the last job (j = L) in a permutation on the next machine.
- = Processing time of the last job in a permutation on the next machine.
3.2. Solution Representation
3.3. Algorithm Implementation
3.4. Sensitivity Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arora, D.; Agarwal, G. Meta-Heuristic Approaches for Flowshop Scheduling Problems: A Review. Int. J. Adv. Oper. Manag. 2016, 8, 1–16. [Google Scholar] [CrossRef]
- Khurshid, B.; Maqsood, S.; Omair, M.; Sarkar, B.; Ahmad, I.; Muhammad, K. An Improved Evolution Strategy Hybridization With Simulated Annealing for Permutation Flow Shop Scheduling Problems. IEEE Access 2021, 9, 4505–94522. [Google Scholar] [CrossRef]
- Book, R.V. Book Review: Computers and Intractability: A Guide to the Theory of $NP$-Completeness. Bull. Am. Math. Soc. 1980, 3, 898–905. [Google Scholar] [CrossRef]
- Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. In Discrete Optimization II; Annals of Discrete Mathematics; Hammer, P.L., Johnson, E.L., Korte, B.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326. [Google Scholar]
- Johnson, S.M. Optimal Two- and Three-Stage Production Schedules with Setup Times Included. Nav. Res. Logist. Q. 1954, 1, 61–68. [Google Scholar] [CrossRef]
- Hundal, T.S.; Rajgopal, J. An Extension of Palmer’s Heuristic for the Flow Shop Scheduling Problem. Int. J. Prod. Res. 1988, 26, 1119–1124. [Google Scholar] [CrossRef]
- Campbell, H.G.; Dudek, R.A.; Smith, M.L. A Heuristic Algorithm for the n Job, m Machine Sequencing Problem. Manag. Sci. 1970, 16, B-630–B-637. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, L.; Song, X.; Wang, Y.; Zhou, C. A Variable Neighborhood Search Based Genetic Algorithm for Flexible Job Shop Scheduling Problem. Clust. Comput. 2019, 22, 11561–11572. [Google Scholar] [CrossRef]
- Ruiz, R.; Maroto, C. A Comprehensive Review and Evaluation of Permutation Flowshop Heuristics. Eur. J. Oper. Res. 2005, 165, 479–494. [Google Scholar] [CrossRef]
- Mumtaz, J.; Zailin, G.; Mirza, J.; Rauf, M.; Sarfraz, S.; Shehab, E. Makespan Minimization for Flow Shop Scheduling Problems Using Modified Operators in Genetic Algorithm. Adv. Transdiscipl. Eng. 2018, 8, 435–440. [Google Scholar] [CrossRef]
- Umam, M.S.; Mustafid, M.; Suryono, S. A Hybrid Genetic Algorithm and Tabu Search for Minimizing Makespan in Flow Shop Scheduling Problem. J. King Saud. Univ. Comput. Inf. Sci. 2022, 34, 7459–7467. [Google Scholar] [CrossRef]
- Radha Ramanan, T.; Iqbal, M.; Umarali, K. A Particle Swarm Optimization Approach for Permutation Flow Shop Scheduling Problem. Int. J. Simul. Multidiscip. Des. Optim. 2014, 5, A20. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Geetha, M.; Tosun, Ö. An Improved Particle Swarm Optimization Algorithm to Solve Hybrid Flowshop Scheduling Problems with the Effect of Human Factors—A Case Study. Comput. Oper. Res. 2020, 114, 104812. [Google Scholar] [CrossRef]
- Shen, C.; Chen, Y.L. Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization. Int. J. Simul. Model. 2020, 19, 313–322. [Google Scholar] [CrossRef]
- He, Z.; Wang, K.; Li, H.; Song, H.; Lin, Z.; Gao, K.; Sadollah, A. Improved Q-Learning Algorithm for Solving Permutation Flow Shop Scheduling Problems. IET Collab. Intell. Manuf. 2022, 4, 35–44. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A Hybrid Whale Optimization Algorithm Based on Local Search Strategy for the Permutation Flow Shop Scheduling Problem. Future Gener. Comput. Syst. 2018, 85, 129–145. [Google Scholar] [CrossRef]
- Li, J.; Guo, L.; Li, Y.; Liu, C.; Wang, L.; Hu, H. Enhancing Whale Optimization Algorithm with Chaotic Theory for Permutation Flow Shop Scheduling Problem. Int. J. Comput. Intell. Syst. 2021, 14, 651–675. [Google Scholar] [CrossRef]
- Bellabai, J.R.; Leela, B.N.M.; Kennedy, S.M.R. Testing the Performance of Bat-Algorithm for Permutation Flow Shop Scheduling Problems with Makespan Minimization. Braz. Arch. Biol. Technol. 2022, 65. [Google Scholar] [CrossRef]
- Liao, C.-J.; Tseng, C.-T.; Luarn, P. A Discrete Version of Particle Swarm Optimization for Flowshop Scheduling Problems. Comput. Oper. Res. 2007, 34, 3099–3111. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.K.; Ryan, M.J. A Simple and Effective Approach for Tackling the Permutation Flow Shop Scheduling Problem. Mathematics 2021, 9, 270. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Chen, C.-L.; Vempati, V.S.; Aljaber, N. An Application of Genetic Algorithms for Flow Shop Problems. Eur. J. Oper. Res. 1995, 80, 389–396. [Google Scholar] [CrossRef]
- Chang, P.-C.; Chen, S.-H.; Fan, C.-Y.; Chan, C.-L. Genetic Algorithm Integrated with Artificial Chromosomes for Multi-Objective Flowshop Scheduling Problems. Appl. Math. Comput. 2008, 205, 550–561. [Google Scholar] [CrossRef]
- Chen, S.-H.; Chang, P.-C.; Cheng, T.C.E.; Zhang, Q. A Self-Guided Genetic Algorithm for Permutation Flowshop Scheduling Problems. Comput. Oper. Res. 2012, 39, 1450–1457. [Google Scholar] [CrossRef]
- Chen, W.; Hao, Y.F. Genetic Algorithm-Based Design and Simulation of Manufacturing Flow Shop Scheduling. Int. J. Simul. Model. 2018, 17, 702–711. [Google Scholar] [CrossRef]
- Wei, H.; Li, S.; Jiang, H.; Hu, J.; Hu, J. Hybrid Genetic Simulated Annealing Algorithm for Improved Flow Shop Scheduling with Makespan Criterion. Appl. Sci. 2018, 8, 2621. [Google Scholar] [CrossRef]
- Tseng, L.-Y.; Lin, Y.-T. A Hybrid Genetic Algorithm for No-Wait Flowshop Scheduling Problem. Int. J. Prod. Econ. 2010, 128, 144–152. [Google Scholar] [CrossRef]
- Hassan, R.; Cohanim, B.; de Weck, O.; Venter, G. A Comparison of Particle Swarm Optimization and the Genetic Algorithm. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2015; American Institute of Aeronautics and Astronautics: Reston, Virigina, 2005. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Tasgetiren, M.F.; Sevkli, M.; Liang, Y.-C.; Gencyilmaz, G. Particle Swarm Optimization Algorithm for Single Machine Total Weighted Tardiness Problem. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 19–23 June 2014; pp. 1412–1419. [Google Scholar]
- Tasgetiren, M.F.; Sevkli, M.; Liang, Y.-C.; Gencyilmaz, G. Particle Swarm Optimization Algorithm for Permutation Flowshop Sequencing Problem. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; pp. 382–389. [Google Scholar]
- Taillard, E. Benchmarks for Basic Scheduling Problems. Eur. J. Oper. Res. 1993, 64, 278–285. [Google Scholar] [CrossRef]
- Moslehi, G.; Khorasanian, D. A Hybrid Variable Neighborhood Search Algorithm for Solving the Limited-Buffer Permutation Flow Shop Scheduling Problem with the Makespan Criterion. Comput. Oper. Res. 2014, 52, 260–268. [Google Scholar] [CrossRef]
- Lian, Z.; Gu, X.; Jiao, B. A Similar Particle Swarm Optimization Algorithm for Permutation Flowshop Scheduling to Minimize Makespan. Appl. Math. Comput. 2006, 175, 773–785. [Google Scholar] [CrossRef]
- Singh, M.R.; Mahapatra, S.S. A Swarm Optimization Approach for Flexible Flow Shop Scheduling with Multiprocessor Tasks. Int. J. Adv. Manuf. Technol. 2012, 62, 267–277. [Google Scholar] [CrossRef]
- Lu, F.-Q.; Huang, M.; Ching, W.-K.; Siu, T.K. Credit Portfolio Management Using Two-Level Particle Swarm Optimization. Inf. Sci. 2013, 237, 162–175. [Google Scholar] [CrossRef]
- Shieh, H.-L.; Kuo, C.-C.; Chiang, C.-M. Modified Particle Swarm Optimization Algorithm with Simulated Annealing Behavior and Its Numerical Verification. Appl. Math. Comput. 2011, 218, 4365–4383. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Koshimura, M.; Fujita, H.; Hasegawa, R. Hybrid Particle Swarm Optimization and Convergence Analysis for Scheduling Problems. In Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; ACM: New York, NY, USA, 2012; pp. 307–314. [Google Scholar]
- Taillard, E. Some Efficient Heuristic Methods for the Flow Shop Sequencing Problem. Eur. J. Oper. Res. 1990, 47, 65–74. [Google Scholar] [CrossRef]
- Marinakis, Y.; Marinaki, M. Particle Swarm Optimization with Expanding Neighborhood Topology for the Permutation Flowshop Scheduling Problem. Soft Comput. 2013, 17, 1159–1173. [Google Scholar] [CrossRef]
- Bewoor, L.; Chandra Prakash, V.; Sapkal, S. Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems. Algorithms 2017, 10, 121. [Google Scholar] [CrossRef]
- Lu, F.; Bi, H.; Huang, M.; Duan, S. Simulated Annealing Genetic Algorithm Based Schedule Risk Management of IT Outsourcing Project. Math. Probl. Eng. 2017, 2017, 6916575. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Gao, L.; Song, Y.; Li, X. An Improved Simulated Annealing Algorithm Based on Residual Network for Permutation Flow Shop Scheduling. Complex. Intell. Syst. 2021, 7, 1173–1183. [Google Scholar] [CrossRef]
- Isiet, M.; Gadala, M. Sensitivity Analysis of Control Parameters in Particle Swarm Optimization. J. Comput. Sci. 2020, 41, 101086. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R. A Modified Particle Swarm Optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). pp. 69–73. [Google Scholar]
- Bansal, J.C.; Singh, P.K.; Saraswat, M.; Verma, A.; Jadon, S.S.; Abraham, A. Inertia Weight Strategies in Particle Swarm Optimization. In Proceedings of the 2011 Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 19–21 October 2011; pp. 633–640. [Google Scholar]
- Zhu, X.; Wang, H. A New Inertia Weight Control Strategy for Particle Swarm Optimization. In AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA, 2018; Volume 1955. [Google Scholar]
- Ozcan, E.; Mohan, C.K. Particle Swarm Optimization: Surfing the Waves. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1939–1944. [Google Scholar]
- Zhang, L.; Wu, J. A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems. Sci. World J. 2014, 2014, 902950. [Google Scholar] [CrossRef]
- Ying, K.-C.; Liao, C.-J. An Ant Colony System for Permutation Flow-Shop Sequencing. Comput. Oper. Res. 2004, 31, 791–801. [Google Scholar] [CrossRef]
- Jarboui, B.; Ibrahim, S.; Siarry, P.; Rebai, A. A Combinatorial Particle Swarm Optimisation for Solving Permutation Flowshop Problems. Comput. Ind. Eng. 2008, 54, 526–538. [Google Scholar] [CrossRef]
- Marinakis, Y.; Marinaki, M. An Adaptive Parameter Free Particle Swarm Optimization Algorithm for the Permutation Flowshop Scheduling Problem. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11943, pp. 168–179. [Google Scholar]
Dimension, j | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1.80 | −0.99 | 3.01 | −0.72 | −1.20 | 2.15 | |
3.89 | 2.94 | 3.08 | −0.87 | −0.20 | 3.16 | |
Jobs, πtij | 5 | 2 | 4 | 1 | 6 | 3 |
Taillard’s Problems | Makespan | RPD | |||||
---|---|---|---|---|---|---|---|
Problem Instance | Upper Bound | PSO | PSO-VNS | HPSO | PSO | PSO-VNS | HPSO |
20 × 5 | |||||||
1 | 1278 | 1294 | 1297 | 1278 ± 0.00 | 1.25 | 1.49 | 0.00 |
2 | 1359 | 1365 | 1366 | 1359 ± 0.00 | 0.44 | 0.52 | 0.00 |
3 | 1081 | 1108 | 1100 | 1081 ± 1.79 | 2.50 | 1.76 | 0.00 |
4 | 1293 | 1311 | 1311 | 1293 ± 0.00 | 1.39 | 1.39 | 0.00 |
5 | 1235 | 1248 | 1248 | 1235 ± 1.00 | 1.05 | 1.05 | 0.00 |
6 | 1195 | 1217 | 1210 | 1195 ± 0.00 | 1.84 | 1.26 | 0.00 |
7 | 1234 | 1251 | 1251 | 1234 ± 2.50 | 1.38 | 1.38 | 0.00 |
8 | 1206 | 1228 | 1218 | 1206 ± 0.00 | 1.82 | 1.00 | 0.00 |
9 | 1230 | 1264 | 1261 | 1230 ± 0.00 | 2.76 | 2.52 | 0.00 |
10 | 1108 | 1135 | 1135 | 1108 ± 0.00 | 2.44 | 2.44 | 0.00 |
ARPD | 1.69 | 1.48 | 0.00 | ||||
20 × 10 | |||||||
1 | 1582 | 1632 | 1625 | 1582 ± 0.00 | 3.16 | 2.72 | 0.00 |
2 | 1659 | 1710 | 1708 | 1659 ± 3.00 | 3.07 | 2.95 | 0.00 |
3 | 1496 | 1551 | 1542 | 1496 ± 2.94 | 3.68 | 3.07 | 0.00 |
4 | 1377 | 1418 | 1417 | 1377 ± 3.85 | 2.98 | 2.90 | 0.00 |
5 | 1419 | 1488 | 1479 | 1419 ± 3.00 | 4.86 | 4.23 | 0.00 |
6 | 1397 | 1443 | 1449 | 1397 ± 2.50 | 3.29 | 3.72 | 0.00 |
7 | 1484 | 1535 | 1531 | 1484 ± 0.00 | 3.44 | 3.17 | 0.00 |
8 | 1538 | 1575 | 1560 | 1538 ± 5.82 | 2.41 | 1.43 | 0.00 |
9 | 1593 | 1638 | 1636 | 1593 ± 0.92 | 2.82 | 2.70 | 0.00 |
10 | 1591 | 1637 | 1637 | 1591 ± 4.41 | 2.89 | 2.89 | 0.00 |
ARPD | 3.26 | 2.98 | 0.00 | ||||
20 × 20 | |||||||
1 | 2297 | 2355 | 2380 | 2297 ± 7.03 | 2.53 | 3.61 | 0.00 |
2 | 2099 | 2168 | 2144 | 2099 ± 4.58 | 3.29 | 2.14 | 0.00 |
3 | 2326 | 2375 | 2360 | 2326 ± 5.88 | 2.11 | 1.46 | 0.00 |
4 | 2223 | 2291 | 2291 | 2223 ± 4.50 | 3.06 | 3.06 | 0.00 |
5 | 2291 | 2364 | 2361 | 2291 ± 4.58 | 3.19 | 3.06 | 0.00 |
6 | 2226 | 2288 | 2276 | 2226 ± 2.40 | 2.79 | 2.25 | 0.00 |
7 | 2273 | 2332 | 2332 | 2273 ± 3.38 | 2.60 | 2.60 | 0.00 |
8 | 2200 | 2260 | 2248 | 2200 ± 3.41 | 2.73 | 2.18 | 0.00 |
9 | 2237 | 2304 | 2304 | 2237 ± 2.50 | 3.00 | 3.00 | 0.00 |
10 | 2178 | 2271 | 2253 | 2178 ± 2.94 | 4.27 | 3.44 | 0.00 |
ARPD | 2.95 | 2.68 | 0.00 | ||||
Average | 2.63 | 2.38 | 0.00 |
Taillard’s Problems | Makespan | RPD | |||||
---|---|---|---|---|---|---|---|
Problem Instance | Upper Bound | PSO | PSO-VNS | HPSO | PSO | PSO-VNS | HPSO |
50 × 5 | |||||||
1 | 2724 | 2740 | 2735 | 2724 ± 0.00 | 0.59 | 0.40 | 0.00 |
2 | 2834 | 2882 | 2882 | 2834 ± 6.08 | 1.69 | 1.69 | 0.00 |
3 | 2621 | 2664 | 2628 | 2621 ± 0.00 | 1.64 | 0.27 | 0.00 |
4 | 2751 | 2795 | 2782 | 2751 ± 0.80 | 1.60 | 1.13 | 0.00 |
5 | 2863 | 2864 | 2864 | 2863 ± 0.00 | 0.03 | 0.03 | 0.00 |
6 | 2829 | 2848 | 2848 | 2829 ± 1.99 | 0.67 | 0.67 | 0.00 |
7 | 2725 | 2774 | 2758 | 2725 ± 4.18 | 1.80 | 1.21 | 0.00 |
8 | 2683 | 2719 | 2707 | 2683 ± 8.40 | 1.34 | 0.89 | 0.00 |
9 | 2552 | 2589 | 2585 | 2552 ± 5.96 | 1.45 | 1.29 | 0.00 |
10 | 2782 | 2786 | 2782 | 2782 ± 0.00 | 0.14 | 0.00 | 0.00 |
ARPD | 1.10 | 0.76 | 0.00 | ||||
50 × 10 | |||||||
1 | 2991 | 3140 | 3105 | 3018 ± 8.45 | 4.98 | 3.81 | 0.90 |
2 | 2867 | 3040 | 2980 | 2890 ± 11.77 | 6.03 | 3.94 | 0.80 |
3 | 2839 | 3015 | 2950 | 2860 ± 15.32 | 6.20 | 3.91 | 0.74 |
4 | 3063 | 3242 | 3180 | 3063 ± 2.00 | 5.84 | 3.82 | 0.00 |
5 | 2976 | 3140 | 3095 | 2995 ± 14.72 | 5.51 | 4.00 | 0.64 |
6 | 3006 | 3148 | 3106 | 3043 ± 2.50 | 4.72 | 3.33 | 1.23 |
7 | 3093 | 3225 | 3195 | 3115 ± 6.00 | 4.27 | 3.30 | 0.71 |
8 | 3037 | 3158 | 3090 | 3048 ± 2.80 | 3.98 | 1.75 | 0.36 |
9 | 2897 | 3030 | 2995 | 2909 ± 8.00 | 4.59 | 3.38 | 0.41 |
10 | 3065 | 3160 | 3140 | 3099 ± 1.50 | 3.10 | 2.45 | 1.11 |
ARPD | 4.92 | 3.37 | 0.69 | ||||
50 × 20 | |||||||
1 | 3850 | 4216 | 4107 | 3910 ± 8.33 | 9.51 | 6.68 | 1.56 |
2 | 3704 | 4052 | 4009 | 3765 ± 13.12 | 9.40 | 8.23 | 1.65 |
3 | 3640 | 3899 | 3860 | 3709 ± 23.83 | 7.12 | 6.04 | 1.90 |
4 | 3723 | 3960 | 3930 | 3792 ± 13.80 | 6.37 | 5.56 | 1.85 |
5 | 3611 | 3850 | 3780 | 3675 ± 15.69 | 6.62 | 4.68 | 1.77 |
6 | 3681 | 3930 | 3890 | 3743 ± 26.00 | 6.76 | 5.68 | 1.68 |
7 | 3704 | 3915 | 3860 | 3762 ± 24.47 | 5.70 | 4.21 | 1.57 |
8 | 3691 | 3920 | 3890 | 3753 ± 25.47 | 6.20 | 5.39 | 1.68 |
9 | 3743 | 3960 | 3925 | 3805 ± 20.16 | 5.80 | 4.86 | 1.66 |
10 | 3756 | 3955 | 3896 | 3822 ± 3.60 | 5.30 | 3.73 | 1.76 |
ARPD | 6.88 | 5.51 | 1.71 | ||||
Average | 4.30 | 3.21 | 0.80 |
Taillard’s Problems | Makespan | RPD | |||||
---|---|---|---|---|---|---|---|
Problem Instance | Upper Bound | PSO | PSO-VNS | HPSO | PSO | PSO-VNS | HPSO |
100 × 5 | |||||||
1 | 5493 | 5523 | 5495 | 5493 ± 1.00 | 0.55 | 0.04 | 0.00 |
2 | 5268 | 5302 | 5290 | 5268 ± 7.84 | 0.65 | 0.42 | 0.00 |
3 | 5175 | 5225 | 5213 | 5175 ± 2.29 | 0.97 | 0.73 | 0.00 |
4 | 5014 | 5035 | 5023 | 5014 ± 3.63 | 0.42 | 0.18 | 0.00 |
5 | 5250 | 5311 | 5260 | 5250 ± 1.83 | 1.16 | 0.19 | 0.00 |
6 | 5135 | 5161 | 5160 | 5135 ± 0.98 | 0.51 | 0.49 | 0.00 |
7 | 5246 | 5292 | 5261 | 5246 ± 0.00 | 0.88 | 0.29 | 0.00 |
8 | 5094 | 5130 | 5120 | 5094 ± 2.45 | 0.71 | 0.51 | 0.00 |
9 | 5448 | 5485 | 5475 | 5448 ± 3.00 | 0.68 | 0.50 | 0.00 |
10 | 5322 | 5360 | 5342 | 5322 ± 6.50 | 0.71 | 0.38 | 0.00 |
ARPD | 0.72 | 0.37 | 0.00 | ||||
100 × 10 | |||||||
1 | 5770 | 6112 | 5879 | 5770 ± 6.42 | 5.93 | 1.89 | 0.00 |
2 | 5349 | 5654 | 5455 | 5364 ± 6.80 | 5.70 | 1.98 | 0.28 |
3 | 5676 | 5945 | 5797 | 5680 ± 5.88 | 4.74 | 2.13 | 0.07 |
4 | 5781 | 6204 | 5940 | 5810 ± 11.27 | 7.32 | 2.75 | 0.50 |
5 | 5467 | 5880 | 5619 | 5485 ± 8.65 | 7.55 | 2.78 | 0.33 |
6 | 5303 | 5625 | 5368 | 5303 ± 4.00 | 6.07 | 1.23 | 0.00 |
7 | 5595 | 5830 | 5727 | 5595 ± 2.80 | 4.20 | 2.36 | 0.00 |
8 | 5617 | 5985 | 5747 | 5624 ± 10.80 | 6.55 | 2.31 | 0.12 |
9 | 5871 | 6164 | 5990 | 5898 ± 4.80 | 4.99 | 2.03 | 0.46 |
10 | 5845 | 6074 | 5922 | 5860 ± 10.08 | 3.92 | 1.32 | 0.26 |
ARPD | 5.70 | 2.08 | 0.20 | ||||
100 × 20 | |||||||
1 | 6202 | 7003 | 6678 | 6308 ± 6.75 | 12.92 | 7.67 | 1.71 |
2 | 6183 | 7035 | 6566 | 6246 ± 27.00 | 13.78 | 6.19 | 1.02 |
3 | 6271 | 7017 | 6726 | 6361 ± 3.60 | 11.90 | 7.26 | 1.44 |
4 | 6269 | 7031 | 6651 | 6331 ± 0.00 | 12.16 | 6.09 | 0.99 |
5 | 6314 | 7131 | 6685 | 6403 ± 11.76 | 12.94 | 5.88 | 1.41 |
6 | 6364 | 7142 | 6781 | 6440 ± 9.62 | 12.23 | 6.55 | 1.19 |
7 | 6268 | 7092 | 6722 | 6342 ± 18.99 | 13.15 | 7.24 | 1.18 |
8 | 6404 | 7233 | 6852 | 6475 ± 8.33 | 12.95 | 7.00 | 1.11 |
9 | 6275 | 7072 | 6726 | 6342 ± 10.50 | 12.70 | 7.19 | 1.07 |
10 | 6434 | 7080 | 6777 | 6510 ± 16.23 | 10.04 | 5.33 | 1.18 |
ARPD | 12.47 | 6.64 | 1.23 | ||||
Average | 6.30 | 3.03 | 0.48 |
Taillard’s Problems | Makespan | RPD | |||||
---|---|---|---|---|---|---|---|
Problem Instance | Upper Bound | PSO | PSO-VNS | HPSO | PSO | PSO-VNS | HPSO |
200 × 10 | |||||||
1 | 10,862 | 11,224 | 10,993 | 10,862 ± 16.17 | 3.33 | 1.21 | 0.00 |
2 | 10,480 | 11,194 | 10,628 | 10,480 ± 14.18 | 6.81 | 1.41 | 0.00 |
3 | 10,922 | 11,435 | 11,122 | 10,922 ± 11.42 | 4.70 | 1.83 | 0.00 |
4 | 10,889 | 11,240 | 11,025 | 10,889 ± 0.00 | 3.22 | 1.25 | 0.00 |
5 | 10,524 | 11,145 | 10,650 | 10,550 ± 11.22 | 5.90 | 1.20 | 0.25 |
6 | 10,329 | 10,929 | 10,468 | 10,365 ± 8.97 | 5.81 | 1.35 | 0.35 |
7 | 10,854 | 11,409 | 11,087 | 10,880 ± 14.11 | 5.11 | 2.15 | 0.24 |
8 | 10,730 | 11,292 | 10,745 | 10,746 ± 5.88 | 5.24 | 0.14 | 0.15 |
9 | 10,438 | 11,098 | 10,515 | 10,438 ± 7.20 | 6.32 | 0.74 | 0.00 |
10 | 10,675 | 11,152 | 10,922 | 10,724 ± 6.86 | 4.47 | 2.31 | 0.46 |
ARPD | 5.09 | 1.36 | 0.14 | ||||
200 × 20 | |||||||
1 | 11,195 | 11,517 | 11,625 | 11,310 ± 11.31 | 2.88 | 3.84 | 1.03 |
2 | 11,203 | 12,685 | 11,850 | 11,326 ± 9.17 | 13.23 | 5.78 | 1.10 |
3 | 11,281 | 12,715 | 11,887 | 11,404 ± 17.76 | 12.71 | 5.37 | 1.09 |
4 | 11,275 | 12,596 | 11,836 | 11,380 ± 11.00 | 11.72 | 4.98 | 0.93 |
5 | 11,259 | 12,658 | 11,780 | 11,394 ± 14.10 | 12.43 | 4.63 | 1.20 |
6 | 11,176 | 12,640 | 11,702 | 11,289 ± 20.38 | 13.10 | 4.71 | 1.01 |
7 | 11,360 | 12,805 | 11,936 | 11,487 ± 8.71 | 12.72 | 5.07 | 1.12 |
8 | 11,334 | 12,679 | 11,832 | 11,464 ± 11.99 | 11.87 | 4.39 | 1.15 |
9 | 11,192 | 12,642 | 11,768 | 11,287 ± 0.00 | 12.96 | 5.15 | 0.85 |
10 | 11,288 | 12,760 | 11,923 | 11,415 ± 9.31 | 13.04 | 5.63 | 1.13 |
ARPD | 11.66 | 4.95 | 1.06 | ||||
500 × 20 | |||||||
1 | 26,059 | 28,524 | 26,808 | 26,220 ± 27.92 | 9.46 | 2.87 | 0.62 |
2 | 26,520 | 29,096 | 27,177 | 26,684 ± 84.41 | 9.71 | 2.48 | 0.62 |
3 | 26,371 | 28,810 | 27,276 | 26,546 ± 34.74 | 9.25 | 3.43 | 0.66 |
4 | 26,456 | 27,895 | 27,178 | 26,640 ± 71.73 | 5.44 | 2.73 | 0.70 |
5 | 26,334 | 28,646 | 27,028 | 26,516 ± 47.5 | 8.78 | 2.64 | 0.69 |
6 | 26,477 | 28,750 | 27,263 | 26,674 ± 18.79 | 8.58 | 2.97 | 0.74 |
7 | 26,389 | 28,540 | 27,116 | 26,642 ± 31.41 | 8.15 | 2.75 | 0.96 |
8 | 26,560 | 28,890 | 27,348 | 26,743 ± 42.81 | 8.77 | 2.97 | 0.69 |
9 | 26,005 | 28,582 | 26,760 | 26,195 ± 30.62 | 9.91 | 2.90 | 0.73 |
10 | 26,457 | 28,844 | 27,204 | 26,604 ± 62.60 | 9.02 | 2.82 | 0.56 |
ARPD | 8.71 | 2.86 | 0.70 | ||||
Average | 8.49 | 3.06 | 0.63 |
Problem Instance | Average Relative Percentage Deviation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HPSO | HWA | CWA | BAT | CLN | NEHT | ACO | CPSO | HGA | HGSA | SGA | MGGA | ACGA | SGGA | PSOENT | HAPSO | |
20 × 5 | 0 | 0 | 0.04 | 0.54 | 2.25 | 3.35 | 1.19 | 1.05 | 17.03 | 7.57 | 1.02 | 0.81 | 1.08 | 1.1 | 0 | 0 |
20 × 10 | 0 | 0 | 0.67 | 2.61 | 4.01 | 5.02 | 1.7 | 2.42 | 28.27 | 7.42 | 1.73 | 1.4 | 1.62 | 1.9 | 0.07 | 0.09 |
20 × 20 | 0 | 0 | 0.68 | 2.54 | 3.32 | 3.73 | 1.6 | 1.99 | 30.1 | 6.37 | 1.48 | 1.06 | 1.34 | 1.6 | 0.08 | 0.07 |
50 × 5 | 0 | 0 | 0.08 | 0.06 | 0.71 | 0.84 | 0.43 | 0.9 | 18.66 | 1.31 | 0.61 | 0.44 | 0.57 | 0.52 | 0.02 | 0.05 |
50 × 10 | 0.69 | 0.54 | 0.79 | 4.00 | 4.23 | 5.12 | 0.89 | 4.85 | 42.9 | 7.05 | 2.81 | 2.56 | 2.79 | 2.74 | 2.11 | 2.01 |
50 × 20 | 1.71 | 0.44 | 2.37 | 6.65 | 5.73 | 6.26 | 2.71 | 6.4 | 58.72 | 8.86 | 3.98 | 3.82 | 3.75 | 3.94 | 3.83 | 3.2 |
100 × 5 | 0 | 0.09 | 0.05 | 0.06 | 0.28 | 0.46 | 0.22 | 0.74 | 19.9 | 1.49 | 0.47 | 0.41 | 0.44 | 0.38 | 0.09 | 0.14 |
100 × 10 | 0.2 | 0.46 | 0.41 | 0.86 | 1.45 | 2.13 | 1.22 | 2.94 | 43.26 | 2.76 | 1.67 | 1.5 | 1.71 | 1.6 | 1.26 | 1.17 |
100 × 20 | 1.23 | 1.52 | 1.87 | 3.84 | 4.74 | 5.23 | 2.22 | 7.11 | 70.2 | 4.21 | 3.8 | 3.15 | 3.47 | 3.51 | 4.37 | 4.13 |
200 × 10 | 0.14 | 0.49 | 0.28 | 0.68 | 1.1 | 1.43 | 0.64 | 2.17 | 47.33 | 2.38 | 0.94 | 0.92 | 0.94 | 0.8 | 1.02 | 1.06 |
200 × 20 | 1.06 | 2.07 | 1.82 | 2.91 | 4.07 | 4.41 | 1.3 | 6.89 | 81.7 | 5.16 | 2.73 | 3.95 | 2.61 | 2.32 | 4.27 | 4.27 |
500 × 20 | 0.7 | 0.91 | 1.19 | 1.66 | 1.91 | 2.24 | 1.68 | - | 86.49 | 3.3 | - | - | - | - | 2.73 | 3.43 |
Average | 0.48 | 0.54 | 0.85 | 2.20 | 2.82 | 3.35 | 1.32 | 3.41 | 45.38 | 4.82 | 1.93 | 1.82 | 1.85 | 1.86 | 1.65 | 1.64 |
Serial Number | Problem Size | Matrix Size | PSO | PSO-VNS | HPSO |
---|---|---|---|---|---|
1 | 20 × 5 | 100 | 4.32 | 6.16 | 8.34 |
2 | 20 × 10 | 200 | 10.80 | 12.47 | 15.01 |
3 | 20 × 20 | 400 | 18.68 | 20.50 | 23.81 |
4 | 50 × 5 | 250 | 16.38 | 18.81 | 22.55 |
5 | 50 × 10 | 500 | 39.00 | 73.76 | 111.63 |
6 | 50 × 20 | 1000 | 87.60 | 135.39 | 190.19 |
7 | 100 × 5 | 500 | 59.40 | 71.92 | 89.20 |
8 | 100 × 10 | 1000 | 332.64 | 403.58 | 501.14 |
9 | 100 × 20 | 2000 | 591.60 | 718.40 | 892.53 |
10 | 200 × 10 | 2000 | 763.20 | 925.89 | 1149.64 |
11 | 200 × 20 | 4000 | 839.40 | 1028.85 | 1285.45 |
12 | 500 × 20 | 10,000 | 998.40 | 1225.25 | 1531.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, I.; Tariq, A.; Shahzad, W.; Masud, M.; Ahmed, S.; Ali, M.U.; Zafar, A. Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem. Systems 2023, 11, 221. https://doi.org/10.3390/systems11050221
Hayat I, Tariq A, Shahzad W, Masud M, Ahmed S, Ali MU, Zafar A. Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem. Systems. 2023; 11(5):221. https://doi.org/10.3390/systems11050221
Chicago/Turabian StyleHayat, Iqbal, Adnan Tariq, Waseem Shahzad, Manzar Masud, Shahzad Ahmed, Muhammad Umair Ali, and Amad Zafar. 2023. "Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem" Systems 11, no. 5: 221. https://doi.org/10.3390/systems11050221
APA StyleHayat, I., Tariq, A., Shahzad, W., Masud, M., Ahmed, S., Ali, M. U., & Zafar, A. (2023). Hybridization of Particle Swarm Optimization with Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling Problem. Systems, 11(5), 221. https://doi.org/10.3390/systems11050221