Exploring Generalized Hardy-Type Inequalities via Nabla Calculus on Time Scales
Abstract
:1. Introduction
2. Preliminaries
- 1.
- The product is differentiable at s andholds.
- 2.
- If , then is differentiable at s andholds.
- 1.
- ,
- 2.
- ,
- 3.
- If , then
- 4.
- If , then
3. Principal Findings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. Notes on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus, LX. An inequality between integrals. Mess. Math. 1925, 54, 150–156. [Google Scholar]
- Leindler, L. Generalization of inequalities of Hardy and Littlewood. Acta Sci. Math. (Szeged) 1970, 31, 285–297. [Google Scholar]
- Sinnamon, G.J. Weighted Hardy and Opial-type inequalities. J. Math. Anal. Appl. 1991, 160, 434–445. [Google Scholar] [CrossRef]
- Stepanov, V.D. Boundedness of linear integral operators on a class of monotone functions. Siberian Math. J. 1991, 32, 540–542. [Google Scholar] [CrossRef]
- Kufner, A.; Persson, L.E. Weighted Inequalities of Hardy Type; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2003. [Google Scholar]
- Kufner, A.; Maligranda, L.; Persson, L.E. The Hardy Inequalities: About Its History and Some Related Results; Vydavatelsky Servis Publishing House: Pilsen, Czech Republic, 2007. [Google Scholar]
- Opic, B.; Kufner, A. Hardy-Type Inequalities; Pitman Research Notes in Mathematics Series; Longman Scientific and Technical: Harlow, UK, 1990. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E. Elementary theorems concerning power series with positive coefficents and moment constants of positive functions. J. Für Math. 1927, 157, 141–158. [Google Scholar]
- Levinson, N. Generalizations of inequalities of Hardy and Littlewood. Duke Math. J. 1964, 31, 389–394. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes of some points in the integral calculus, LXIV. Further inequalities between integrals. Mess. Math. 1928, 57, 12–16. [Google Scholar]
- Knopp, K. Über Reihen mit positiven Gliedern. J. Lond. Math. Soc. 1928, 3, 205–311. [Google Scholar] [CrossRef]
- Kaijser, S.; Persson, L.E.; Öberg, A. On Carleman and Knopp’s inequalities. J. Approx. Theory 2002, 117, 140–151. [Google Scholar] [CrossRef]
- Čižmešija, A.; Pećarixcx, J.E.; Persson, L.-E. On strenghtened Hardy and Pólya-Knopp’s inequalities. J. Approx. Theory 2003, 125, 74–84. [Google Scholar] [CrossRef]
- Sulaiman, W.T. Some Hardy type integral inequalities. Appl. Math. Lett. 2012, 25, 520–525. [Google Scholar] [CrossRef]
- Řehak, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequalities Appl. 2005, 2005, 495–507. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland; Heidlelberg, Germany; New York, NY, USA; Dordrechet, The Netherlands; London, UK, 2014. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Inequalities on Time Scales; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Donchev, T.; Nosheen, A.; Pećarixcx, J.E. Hardy-type inequalities on time scales vie convexity in several variables. ISRN Math. Anal. 2013, 2013, 9. [Google Scholar]
- Rezk, H.M.; Saied, A.I.; Ali, M.; Glalah, B.A.; Zakarya, M. Novel Hardy-Type Inequalities with Submultiplicative Functions on Time Scales Using Delta Calculus. Axioms 2023, 12, 791. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Krniĉ, M. More accurate dynamic Hardy-type inequalities obtained via superquadraticity. RACSAM 2019, 1, 2691–2713. [Google Scholar] [CrossRef]
- Bibi, R.; Bohner, M.; Pećarixcx, J.; Varošanec, S. Minkowski and Beckenbach-Dresher inequalities and functionals on time scales. J. Math. Inequal 2013, 7, 299–312. [Google Scholar] [CrossRef]
- Bohner, M.; Georgiev, S.G. Multiple Integration on Time Scales. Multivariable Dynamic Calculus on Time Scales; Springer: Cham, Switzerland, 2016; pp. 449–515. [Google Scholar]
- Oguntuase, J.A.; Persson, L.E. Time scales Hardy-type inequalities via superquadracity. Ann. Funct. Anal. 2014, 5, 61–73. [Google Scholar] [CrossRef]
- Rezk, H.M.; El-Hamid, H.A.A.; Ahmed, A.M.; AlNemer, G.; Zakarya, M. Inequalities of Hardy Type via Superquadratic Functions with General Kernels and Measures for Several Variables on Time Scales. J. Funct. Spaces 2020, 2020, 6427378. [Google Scholar] [CrossRef]
- Rezk, H.M.; Saied, A.I.; AlNemer, G.; Zakarya, M. On Hardy–Knopp Type Inequalities with Kernels via Time Scale Calculus. J. Math. 2022, 2022, 7997299. [Google Scholar] [CrossRef]
- Zakarya, M.; Saied, A.I.; Ali, M.; Rezk, H.M.; Kenawy, M.R. Novel Integral Inequalities on Nabla Time Scales with C-Monotonic Functions. Symmetry 2023, 15, 1248. [Google Scholar] [CrossRef]
- Saied, A.I.; AlNemer, G.; Zakarya, M.; Cesarano, C.; Rezk, H. Some new generalized inequalities of Hardy type involving several functions on time scale nabla calculus. Axioms 2022, 11, 662. [Google Scholar] [CrossRef]
- Georgiev, S.G. Integral Inequalities on Time Scales; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Gulsen, T.; Jadlovská, I.; Yilmaz, E. On the number of eigenvalues for parameter-dependent diffusion problem on time scales. Math. Methods Appl. Sci. 2021, 44, 985–992. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Anderson, D.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H. Nabla dynamic equations on time scales. Panamer. Math. J. 2003, 13, 1–47. [Google Scholar]
- Güvenilir, A.F.; Kaymakçalan, B.; Pelen, N.N. Constantin’s inequality for nabla and diamond-alpha derivative. J. Inequal. Appl. 2015, 2015, 1–17. [Google Scholar] [CrossRef]
- Özkan, U.M.; Sarikaya, M.Z.; Yildirim, H. Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 2008, 21, 993–1000. [Google Scholar] [CrossRef]
- Dinu, C. Convex Functions on Time Scales. Ann. Univ. Craiova Math. Comp. Sci. Ser. 2008, 35, 87–96. [Google Scholar]
- Sandor, J. Inequalities for multiplicative arithmetic functions. arXiv 2011, arXiv:1105.0292. [Google Scholar]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequalities 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM 2021, 115, 46. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM 2020, 114, 96. [Google Scholar] [CrossRef]
- Adil Khan, M.; Sohail, A.; Ullah, H.; Saeed, T. Estimations of the Jensen Gap and Their Applications Based on 6-Convexity. Mathematics 2023, 11, 1957. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, M.A.; Saeed, T. Determination of Bounds for the Jensen Gap and Its Applications. Mathematics 2021, 9, 3132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezk, H.M.; Mohammed, M.I.; Balogun, O.S.; Saied, A.I. Exploring Generalized Hardy-Type Inequalities via Nabla Calculus on Time Scales. Symmetry 2023, 15, 1656. https://doi.org/10.3390/sym15091656
Rezk HM, Mohammed MI, Balogun OS, Saied AI. Exploring Generalized Hardy-Type Inequalities via Nabla Calculus on Time Scales. Symmetry. 2023; 15(9):1656. https://doi.org/10.3390/sym15091656
Chicago/Turabian StyleRezk, Haytham M., Mahmoud I. Mohammed, Oluwafemi Samson Balogun, and Ahmed I. Saied. 2023. "Exploring Generalized Hardy-Type Inequalities via Nabla Calculus on Time Scales" Symmetry 15, no. 9: 1656. https://doi.org/10.3390/sym15091656