Pressure Arch Effect of Deeply Buried Symmetrically Distributed Triple Tunnels
<p>Excavation sequence and geometric dimensions of closely spaced triple tunnels in Badaling [<a href="#B27-symmetry-15-00673" class="html-bibr">27</a>]. (①–⑨ represents the tunnel excavation sequence).</p> "> Figure 2
<p>Crown settlement of triple tunnels in the class-V ground (mm).</p> "> Figure 3
<p>Surrounding rock pressure distribution of triple tunnels in the class-V ground (kPa). (①–⑨ represents the tunnel excavation sequence).</p> "> Figure 4
<p>Selection of measuring points (lines) of surrounding rock deformation.</p> "> Figure 5
<p>Elastic-plastic stress distribution of circular cavity in the hydrostatic stress field.</p> "> Figure 6
<p>Pressure arch boundary distribution after tunnel excavation.</p> "> Figure 7
<p>Characterization parameters of surrounding rock stability of deeply buried, closely spaced triple tunnels.</p> "> Figure 8
<p>Three-dimensional numerical model of closely spaced triple tunnels.</p> "> Figure 9
<p>Progressive development of ground settlement of triple tunnels. (<b>a</b>) Step 1; (<b>b</b>) Step 2; (<b>c</b>) Step 3; (<b>d</b>) Step 4; (<b>e</b>) Step 5; (<b>f</b>) Step 6; (<b>g</b>) Step 7; (<b>h</b>) Step 8; (<b>i</b>) Step 9.</p> "> Figure 10
<p>Progressive development of plastic zone of triple tunnels. (<b>a</b>) Step 1; (<b>b</b>) Step 2; (<b>c</b>) Step 3; (<b>d</b>) Step 4; (<b>e</b>) Step 5; (<b>f</b>) Step 6; (<b>g</b>) Step 7; (<b>h</b>) Step 8; (<b>i</b>) Step 9.</p> "> Figure 10 Cont.
<p>Progressive development of plastic zone of triple tunnels. (<b>a</b>) Step 1; (<b>b</b>) Step 2; (<b>c</b>) Step 3; (<b>d</b>) Step 4; (<b>e</b>) Step 5; (<b>f</b>) Step 6; (<b>g</b>) Step 7; (<b>h</b>) Step 8; (<b>i</b>) Step 9.</p> "> Figure 11
<p>Progressive development of max principal stress of left tunnel. (<b>a</b>) Location of the left tunnel excavation face; (<b>b</b>) Variation curve of max principal stress above the left tunnel crown.</p> "> Figure 12
<p>Progressive development of max principal stress of right tunnel. (<b>a</b>) Location of the right tunnel excavation face; (<b>b</b>) Variation curve of max principal stress above the right tunnel crown.</p> "> Figure 13
<p>Progressive development of max principal stress of middle tunnel. (<b>a</b>) Location of the middle tunnel excavation face; (<b>b</b>) Variation curve of max principal stress above the middle tunnel crown.</p> "> Figure 14
<p>Progressive development of max principal stress of triple tunnels. (<b>a</b>) Step 1; (<b>b</b>) Step 2; (<b>c</b>) Step 3; (<b>d</b>) Step 4; (<b>e</b>) Step 5; (<b>f</b>) Step 6; (<b>g</b>) Step 7; (<b>h</b>) Step 8; (<b>i</b>) Step 9.</p> "> Figure 15
<p>Pressure arch boundary height in V1 grade surrounding rock.</p> "> Figure 16
<p>Middle line deformation of the left and right pillars in the V1 grade surrounding rock. (<b>a</b>) Horizontal displacement of left and right rock pillars; (<b>b</b>) Vertical displacement of the left and right rock pillars.</p> "> Figure 17
<p>Deformation curves of triple tunnels with different depths <span class="html-italic">H<sub>d</sub></span>. (<b>a</b>) Crown settlement of tunnels at different buried depths <span class="html-italic">H<sub>d</sub></span>; (<b>b</b>) Horizontal convergence of tunnels with different depths <span class="html-italic">H<sub>d</sub></span>.</p> "> Figure 18
<p>Left rock pillar deformation with different depths <span class="html-italic">H<sub>d</sub></span>. (<b>a</b>) Horizontal displacement of the left rock pillar with different buried depth <span class="html-italic">H<sub>d</sub></span>; (<b>b</b>) Vertical displacement of the left rock pillar with different buried depth <span class="html-italic">H<sub>d</sub></span>.</p> "> Figure 19
<p>The distribution of plastic zone in different depths <span class="html-italic">H<sub>d</sub></span>. (<b>a</b>) <span class="html-italic">H<sub>d</sub></span> = 40 m; (<b>b</b>) <span class="html-italic">H<sub>d</sub></span> = 50 m; (<b>c</b>) <span class="html-italic">H<sub>d</sub></span> = 60 m; (<b>d</b>) <span class="html-italic">H<sub>d</sub></span> = 70 m; (<b>e</b>) <span class="html-italic">H<sub>d</sub></span> = 80 m; (<b>f</b>) <span class="html-italic">H<sub>d</sub></span> = 90 m; (<b>g</b>) <span class="html-italic">H<sub>d</sub></span> = 100 m; (<b>h</b>) <span class="html-italic">H<sub>d</sub></span> = 120 m; (<b>i</b>) <span class="html-italic">H<sub>d</sub></span> = 140 m.</p> "> Figure 19 Cont.
<p>The distribution of plastic zone in different depths <span class="html-italic">H<sub>d</sub></span>. (<b>a</b>) <span class="html-italic">H<sub>d</sub></span> = 40 m; (<b>b</b>) <span class="html-italic">H<sub>d</sub></span> = 50 m; (<b>c</b>) <span class="html-italic">H<sub>d</sub></span> = 60 m; (<b>d</b>) <span class="html-italic">H<sub>d</sub></span> = 70 m; (<b>e</b>) <span class="html-italic">H<sub>d</sub></span> = 80 m; (<b>f</b>) <span class="html-italic">H<sub>d</sub></span> = 90 m; (<b>g</b>) <span class="html-italic">H<sub>d</sub></span> = 100 m; (<b>h</b>) <span class="html-italic">H<sub>d</sub></span> = 120 m; (<b>i</b>) <span class="html-italic">H<sub>d</sub></span> = 140 m.</p> "> Figure 20
<p>The max principal stress programs of different buried depths <span class="html-italic">H<sub>d</sub></span>. (<b>a</b>) <span class="html-italic">H<sub>d</sub></span> = 40 m; (<b>b</b>) <span class="html-italic">H<sub>d</sub></span> = 50 m; (<b>c</b>) <span class="html-italic">H<sub>d</sub></span> = 60 m; (<b>d</b>) <span class="html-italic">H<sub>d</sub></span> = 70 m; (<b>e</b>) <span class="html-italic">H<sub>d</sub></span> = 80 m; (<b>f</b>) <span class="html-italic">H<sub>d</sub></span> = 90 m; (<b>g</b>) <span class="html-italic">H<sub>d</sub></span> = 100 m; (<b>h</b>) <span class="html-italic">H<sub>d</sub></span> = 120 m; (<b>i</b>) <span class="html-italic">H<sub>d</sub></span> = 140 m.</p> "> Figure 21
<p>Pressure arch range of triple tunnels with different buried depths. (<b>a</b>) Outer boundary height of pressure arch; (<b>b</b>) Inner boundary height of pressure arch; (<b>c</b>) Pressure arch thickness.</p> ">
Abstract
:1. Introduction
2. Engineering Background and Field Monitoring
2.1. Overview of Deeply Buried Tripe Tunnels of Badaling Great Wall Station
2.2. Field Monitoring of Triple Tunnels
3. Mechanical Parameters of Pressure Arch of Triple Tunnels
3.1. Deformation Parameters of Surrounding Rock
3.2. Plastic Zone Parameters
- (1)
- Plasticity of the rock pillar
- (2)
- Range of plastic zone
3.3. Boundary Parameters of Pressure Arch
4. Progressive Evolution of Pressure Arch of Triple Tunnels
4.1. Numerical Model
- (1)
- The surrounding rock is isotropic and ideally elastoplastic under the Mohr–Coulomb strength criterion.
- (2)
- The stress of the original rock is uniformly distributed, and the direction of the principal stress is vertical or horizontal.
- (3)
- The surrounding rock is simulated with the solid element, and the tunnel lining is modeled with the shell element.
4.2. Progressive Development Process of Settlement Arch
4.3. Progressive Development Process of Plastic Arch
4.4. Progressive Development Process of Stress Arch
4.4.1. Longitudinal Development of Stress Arch
- (1)
- For the first-excavated left tunnel (Figure 11):
- (2)
- For the second-excavated right tunnel (Figure 12):
- (3)
- For the last-excavated middle tunnel (Figure 13):
4.4.2. Lateral Development of Stress Arch
4.5. Different Safety States of the Triple Tunnels
5. Effect of Buried Depth on Pressure Arch
5.1. Deformation of Surrounding Rock with Different Buried Depth
5.2. Plastic Zone Distribution with Different Buried Depth
5.3. Pressure Arch Boundary with Different Buried Depth
6. Conclusions
- The noticeable asymmetric pressure arch effect of triple tunnels is in-situ observed above triple tunnels. The arching behavior of the middle tunnels is more significant than the side tunnels.
- Due to the complicated mechanical disturbances, pre-arching and double-arching effects are also observed in triple tunnel excavations.
- The pre-deformation and pre-failure are considerable in the middle tunnel, so the safety state of the middle tunnel is the worst. Improved pillar-reinforcing cables and radial grouting should be timely adopted in the middle tunnel.
- The left and right rock pillars are recognized as the two stable abutments of three pressure arches in triple tunnels. Pillar-reinforcing cables and radial grouting should be used to prevent the overall collapse of the combined large pressure arch.
- Enough buried depth is crucial for forming a complete pressure arch in triple tunnels. The critical arching depth of symmetrically distributed triple tunnels is proposed based on whether the internal and external boundaries of the pressure arch exist.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engesser, F. Über Den Erddruck Gegen Innere Stützwände (Tunnelwände). Deutsche Bauzeitung 1882, 16, 91–93. [Google Scholar]
- Terzaghi, K.T. Theoretical Soil Mechanics; John Wiley & Sons. Inc.: New York, NY, USA, 1943. [Google Scholar]
- Chappell, B.A. Deformational Response in Discontinua. Int. J. Rock Mech. Min. 1979, 16, 377–390. [Google Scholar] [CrossRef]
- Huang, Z.P.; Broch, E.; Lu, M. Cavern Roof Stability—Mechanism of Arching and Stabilization by Rockbolting. Tunn. Undergr. Space Technol. 2002, 17, 249–261. [Google Scholar] [CrossRef]
- Chen, C.N.; Huang, W.Y.; Tseng, C.T. Stress Redistribution and Ground Arch Development during Tunneling. Tunn. Undergr. Space Technol. 2011, 26, 228–235. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhang, P.; Zhou, W.; Dong, S.; Ma, B.S. A New Model to Predict Soil Pressure Acting on Deep Burial Jacked Pipes. Tunn. Undergr. Space Technol. 2016, 60, 183–196. [Google Scholar] [CrossRef]
- Kong, X.X.; Liu, Q.S.; Zhang, Q.B.; Wu, Y.X.; Zhao, J. A Method to Estimate the Pressure Arch Formation Above Underground Excavation in Rock Mass. Tunn. Undergr. Space Technol. 2018, 71, 382–390. [Google Scholar] [CrossRef]
- Dancygier, A.N.; Karinski, Y.S.; Chacha, A. A Model to Assess the Response of an Arched Roof of a Lined Tunnel. Tunn. Undergr. Space Technol. 2016, 56, 211–225. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, D.; Fang, Q.; Dui, G.; Chu, Z. Analytical Solutions for Deep Tunnels in Strain-Softening Rocks Modeled by Different Elastic Strain Definitions with the Unified Strength Theory. Sci. China Technol. Sci. 2022, 65, 2503–2519. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, D.; Fang, Q.; Huangfu, N.; Chu, Z. Convergence-Confinement Analysis for Tunnels with Combined Bolt–Cable System Considering the Effects of Intermediate Principal Stress. Acta Geotech. 2022. [Google Scholar] [CrossRef]
- Lin, X.T.; Chen, R.P.; Wu, H.N.; Cheng, H.Z. Three-Dimensional Stress-Transfer Mechanism and Soil Arching Evolution Induced by Shield Tunneling in Sandy Ground. Tunn. Undergr. Space Technol. 2019, 93, 103104. [Google Scholar] [CrossRef]
- Ram, S.; Waclawik, P.; Nemcik, J.; Kukutsch, R.; Kumar, A.; Singh, A.K.; Gong, L. Mechanical Behaviors of Deep Pillar Sandwiched between Strong and Weak Layers. J. Rock. Mech. Geo Eng. 2022, in press. [CrossRef]
- Iglesia, G.R.; Einstein, H.H.; Whitman, R.V. Investigation of Soil Arching with Centrifuge Tests. J. Geotech. Geoenviron. 2014, 140, 4013005. [Google Scholar] [CrossRef]
- Lee, C.J.; Wu, B.R.; Chen, H.T.; Chiang, K.H. Tunnel Stability and Arching Effects during Tunneling in Soft Clayey Soil. Tunn. Undergr. Space Technol. 2006, 21, 119–132. [Google Scholar] [CrossRef]
- Ran, L.; Pin, C.; Dingli, Z.; Shengtao, W.; Zhijun, S.; Honggui, P. Numerical Research and Engineering Practice of Rock Stability of Large Section Triple Tunnels. China Civ. Eng. J. 2022, 11, 83–95. [Google Scholar]
- Anwar, K. A Study On Stress Rock Arch Development Around Dual Caverns; Nanyang Technological Univerisity: Singapore, 2003. [Google Scholar]
- Yang, X.L.; Jin, Q.Y.; Ma, J.Q. Pressure From Surrounding Rock of Three Shallow Tunnels with Large Section and Small Spacing. J. Cent. South Univ. 2012, 19, 2380–2385. [Google Scholar] [CrossRef]
- Li, P.F.; Wang, F.; Fan, L.F.; Wang, H.D.; Ma, G.W. Analytical Scrutiny of Loosening Pressure on Deep Twin-Tunnels in Rock Formations. Tunn. Undergr. Space Technol. 2019, 83, 373–380. [Google Scholar] [CrossRef]
- Seo, H. Infrared Thermography for Detecting Cracks in Pillar Models with Different Reinforcing Systems. Tunn. Undergr. Space Technol. 2021, 116, 104118. [Google Scholar] [CrossRef]
- Kokar, M.K.; Akgün, H. Methodology for Tunnel and Portal Support Design in Mixed Limestone, Schist and Phyllite Conditions: A Case Study in Turkey. Int. J. Rock Mech. Min. 2003, 40, 173–196. [Google Scholar] [CrossRef]
- Akgün, H.; Koçkar, M.K. Design of Anchorage and Assessment of the Stability of Openings in Silty, Sandy Limestone: A Case Study in Turkey. Int. J. Rock Mech. Min. 2004, 41, 37–49. [Google Scholar] [CrossRef]
- Akgün, H.; Muratlı, S.; Koçkar, M.K. Geotechnical Investigations and Preliminary Support Design for the Geçilmez Tunnel: A Case Study Along the Black Sea Coastal Highway, Giresun, Northern Turkey. Tunn. Undergr. Space Technol. 2014, 40, 277–299. [Google Scholar] [CrossRef]
- Azarafza; Mohammad; Akgun; Haluk; Asghari-Kaljahi; Ebrahim. Stochastic Geometry Model of Rock Mass Fracture Network in Tunnels. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 379–386. [Google Scholar] [CrossRef]
- Yertutanol, K.; Akgün, H.; Sopacı, E. Displacement Monitoring, Displacement Verification and Stability Assessment of the Critical Sections of the Konak Tunnel, İzmir, Turkey. Tunn. Undergr. Space Technol. 2020, 101, 103357. [Google Scholar] [CrossRef]
- Naseem, A.; Schotte, K.; De Pauw, B.; De Backer, H. Ground Settlements Due to Construction of Triplet Tunnels with Different Construction Arrangements. Adv. Civ. Eng. 2019, 2019, 8637837. [Google Scholar] [CrossRef] [Green Version]
- Naseem, A.; Kashif, M.; Iqbal, N.; Schotte, K.; De Backer, H. Seismic Behavior of Triple Tunnel Complex in Soft Soil Subjected to Transverse Shaking. Appl. Sci. 2020, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, D.; Wu, P.; Fang, Q.; Li, A.; Cao, L. Combined Application of Pipe Roof Pre-Support and Curtain Grouting Pre-Reinforcement in Closely Spaced Large Span Triple Tunnels. Appl. Sci. 2020, 10, 3186. [Google Scholar] [CrossRef]
- Zhang, D.; Fang, Q.; Hou, Y.; Li, P.; Yuen Wong, L.N. Protection of Buildings Against Damages as a Result of Adjacent Large-Span Tunneling in Shallowly Buried Soft Ground. J. Geotech. Geoenviron. 2013, 139, 903–913. [Google Scholar] [CrossRef]
- Ko Kar, M.K.; Akgün, H. Engineering Geological Investigations Along the Ilıksu Tunnels, Alanya, Southern Turkey. Eng. Geol. 2003, 68, 141–158. [Google Scholar] [CrossRef]
- Sopacı, E.; Akgun, H. Engineering Geological Investigations and the Preliminary Support Design for the Proposed Ordu Peripheral Highway Tunnel, Ordu, Turkey. Eng. Geol. 2008, 96, 43–61. [Google Scholar] [CrossRef]
- Li, R.; Zhang, D.; Fang, Q.; Liu, D.; Luo, J.; Fang, H. Mechanical Responses of Closely Spaced Large Span Triple Tunnels. Tunn. Undergr. Space Technol. 2020, 105, 103574. [Google Scholar] [CrossRef]
- Yan, Q.X.; Zhang, C.; Lin, G.; Wang, B. Field Monitoring of Deformations and Internal Forces of Surrounding Rocks and Lining Structures in the Construction of the Gangkou Double-Arched Tunnel—A Case Study. Appl. Sci. 2017, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Ghiasi, V.; Ghiasi, S.; Prasad, A. Evaluation of Tunnels Under Squeezing Rock Condition. J. Eng. Des. Technol. 2012, 10, 168–179. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J.; Huang, P.; Tang, M.; Qiao, X.; Liu, Q. Deformation and Mechanical Model of Temporary Support Sidewall in Tunnel Cutting Partial Section. Tunn. Undergr. Space Technol. 2017, 61, 40–49. [Google Scholar] [CrossRef]
- Li, Z.; Lin, W.; Ye, J.; Chen, Y.; Bian, X.; Gao, F. Soil Movement Mechanism Associated with Arching Effect in a Multi-Strutted Excavation in Soft Clay. Tunn. Undergr. Space Technol. 2021, 110, 103816. [Google Scholar] [CrossRef]
- Li, R.; Zhang, D.; Fang, Q.; Li, A.; Hong, X.; Ma, X. Geotechnical Monitoring and Safety Assessment of Large-Span Triple Tunnels Using Drilling and Blasting Method. J. Vib. 2019, 21, 1373–1387. [Google Scholar] [CrossRef] [Green Version]
Value | Class I (Very Good) | Class II (Good) | Class III (Fair) | Class IV (Poor) | Class V (Very Poor) |
---|---|---|---|---|---|
BQ | >550 | 451–550 | 351–450 | 251–350 | <250 |
Q | >40 | 10–40 | 4–10 | 1–4 | <1 |
Material | Density ρ/kg·m−3 | Elastic Modulus E/GPa | Poisson Ratio ν | Cohesion c/kPa | Friction Angle φ/° | Thickness H/m |
---|---|---|---|---|---|---|
Class V ground | 1700 | 1.3 | 0.41 | 100 | 22 | 200 |
Tunnel lining | 2400 | 26.4 | 0.2 | - | - | 0.4 |
Tunnel | Crown Settlement/mm | Height of Plastic Zone/m | Inner Boundary of Pressure Arch/m |
---|---|---|---|
Left tunnel | 39.3 | 10.9 | 6.8 |
Right tunnel | 35.0 | 9.9 | 6.3 |
Middle tunnel | 47.2 | 27.6 m | 14.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhang, D.; Song, Y.; Li, A.; Luo, J. Pressure Arch Effect of Deeply Buried Symmetrically Distributed Triple Tunnels. Symmetry 2023, 15, 673. https://doi.org/10.3390/sym15030673
Li R, Zhang D, Song Y, Li A, Luo J. Pressure Arch Effect of Deeply Buried Symmetrically Distributed Triple Tunnels. Symmetry. 2023; 15(3):673. https://doi.org/10.3390/sym15030673
Chicago/Turabian StyleLi, Ran, Dingli Zhang, Yuan Song, Ao Li, and Jiwei Luo. 2023. "Pressure Arch Effect of Deeply Buried Symmetrically Distributed Triple Tunnels" Symmetry 15, no. 3: 673. https://doi.org/10.3390/sym15030673