MODeLING.Vis: A Graphical User Interface Toolbox Developed for Machine Learning and Pattern Recognition of Biomolecular Data
<p>MODeLING.Vis Data Visualization: use of the MODeLING.Vis with EM iteration, delimiting the concentration (ng/µL) thresholds and the quantity of MW intervals (kernels = 13). It provides the identification of the following significant (<span class="html-italic">p</span> < 0.05) intervals of MW: (A) [9.1;9.8] kDa, (B) [9.8;10.3] kDa, (C) [10.3;13.7] kDa, (D) [13.7;17.5] kDa, (E) [17.5;21.1] kDa, (F) [21.1;24.7] kDa, (G) [24.7;36] kDa, (H) [36;42.6] kDa, (I) [42.6;51.5] kDa, (J) [51.5;65] kDa, (K) [65;77] kDa, and (L) [77;149.7] kDa.</p> "> Figure 2
<p>MODeLING.Vis Data Exploration T0: an exploration of the electrophoretic dataset for T0, defining the threshold to 2500 ng/µL. Experimental Top is shown in red, Experimental Bottom is shown in green, Control Top is shown in blue, and Control Bottom is shown in yellow. Data clusters in only two PCA components are represented. A small but not significant (<span class="html-italic">p</span> > 0.05) separation of the Experimental Top (red square) and Control Bottom (yellow circle) subgroups are presented.</p> "> Figure 3
<p>MODeLING.Vis Data Exploration T1: an exploration of the electrophoretic dataset for T1, defining the threshold to 2500 ng/µL. The Experimental Top is shown in red, Experimental Bottom is shown in green, Control Top is shown in blue, and Control Bottom is shown in yellow. Data clusters in three PCA components are represented. A more relevant separation of the Experimental Top (red square) and Control Bottom (yellow circle) subgroups (when compared to T0) is presented.</p> "> Figure 4
<p>MODeLING.Vis Data Exploration T1 − T0: an exploration of the electrophoretic dataset for T1 − T0, defining the threshold to 2500 ng/µL. Experimental Top is shown in red, Experimental Bottom is shown in green, Control Top is shown in blue, and Control Bottom is shown in yellow. Data clusters in three PCA components are represented. A significant separation (<span class="html-italic">p</span> < 0.05) of the square symbols (Experimental subgroups), distributed along the top 2PCA and 3PCA axis, and the circle symbols (Control subgroups), distributed along the bottom 2PCA and bottom 1PCA axis, is presented with statistical relevance. As an example of the statistical separation between the electropherograms of each subgroup, the image shows a comparison of the electrophoretic profiles of the subject D01383 (Experimental Top subgroup (1)), subject D01371 (Experimental Bottom subgroup (3)), subject D01337 (Control Top subgroup (2)) and subject D01319 (Control Bottom subgroup (4)).</p> "> Figure 5
<p>Capillary gels and electropherogram profile of the selected best five subjects in all T0 − T1, all in T0, and all in T1, for the neuroinflammatory and neuropeptide panel. From each subphenome, for both the expected protein profile in T0, after the intervention protocol in T1, and the combined T0T1, a graphical representation is presented showing the best five capillary gels and quantitative electropherograms for the study of the neuroinflammatory and neuropeptide panel. The intergroup difference and the protein distribution are represented.</p> "> Figure 6
<p>Electropherogram profile of the selected best five subjects from the Experimental Top subgroup, in T0, in T1, in T0 − T1 without positive control, and in T0 − T1 with only positive control, for the neuroinflammatory/neuropeptide panel. For the expected protein profile in T0, after the intervention protocol in T1, the combined T0T1 without the positive control, and the combined T0T1 of only the positive control, a graphical representation is presented showing the best five quantitative electropherograms of the Experimental Top subgroup to study the neuroinflammatory and neuropeptide panel. Through this figure, the intragroup difference between T0 and T1 is demonstrated.</p> "> Figure 7
<p>Electropherogram profile of the selected best five subjects from the Experimental Bottom subgroup, in T0, in T1, in T0 − T1 without positive control, and in T0 − T1 only positive control, for the neuroinflammatory/neuropeptide panel. For the expected protein profile in T0, after the intervention protocol in T1, the combined T0T1 without the positive control, and the combined T0T1 of only the positive control, a graphical representation is presented showing the best five quantitative electropherograms of the Experimental Bottom subgroup to study the neuroinflammatory and neuropeptide panel. Through this figure, the intragroup difference between T0 and T1 is demonstrated.</p> "> Figure 8
<p>Electropherogram profile of the selected best five subjects from the Control Top subgroup, in T0, in T1, in T0 − T1 without positive control, and in T0 − T1 only positive control, for the neuroinflammatory/neuropeptide panel. For the expected protein profile in T0, after the intervention protocol in T1, the combined T0T1 without the positive control, and the combined T0T1 of only the positive control, a graphical representation is presented showing the best five quantitative electropherograms of the Control Top subgroup to study the neuroinflammatory and neuropeptide panel. Through this figure, the intragroup difference between T0 and T1 is demonstrated.</p> "> Figure 9
<p>Electropherogram profile of the selected best five subjects from the Control Bottom subgroup, in T0, in T1, in T0 − T1 without positive control, and in T0 − T1 only positive control, for the neuroinflammatory/neuropeptide panel. For the expected protein profile in T0, after the intervention protocol in T1, the combined T0T1 without the positive control, and the combined T0T1 of only the positive control, a graphical representation is presented showing the best five quantitative electropherograms of the Control Bottom subgroup to study the neuroinflammatory and neuropeptide panel. Through this figure, the intragroup difference between T0 and T1 is demonstrated.</p> "> Figure 10
<p>Research outline: molecular stratification. Graphical scheme presenting the integration of this paper in the overall experiment conducted by the authors for molecular stratification of a neurotypical sample. “GUI Toolbox Development In Neurotypical Young Adults” thus considers the same methodology that led to the establishment of Neuro.SalivaPrint. It advanced with a stratification stage by data visualizing and data mining of 92 stratified subjects.</p> "> Figure 11
<p>Protein profile Experion<sup>TM</sup> data acquisition and algorithm development. Data mining solution planned to discover, and model patterns used to find the MW intervals in the neurotypical sample. A user-friendly software environment was developed to enable a thorough exploration of the information embedded in the capillary electrophoresis database.</p> "> Figure 12
<p>GUI toolbox: MODeLING.Vis is used for data mining of different neuroproteomics datasets. This data mining consisted of both unsupervised/unlabeled and supervised/labeled machine learning.</p> "> Figure 13
<p>MODeLING.Vis. Graphical representation of the GUI toolbox and its functions: data visualization, exploration, and mining.</p> "> Figure 14
<p>MODeLING.Vis. Flow chart with a brief explanation and summary of the overall processing steps and the structure of the GUI toolbox.</p> ">
Abstract
:1. Introduction
Symmetry between Psychological and Total Protein Profiles
2. Materials and Methods
2.1. Data Acquisition (ExperionTM Automated Electrophoresis System (Biorad®)
2.2. Data Analysis and Processing (MATLAB Toolbox)
2.3. Software
3. Results and Discussion
3.1. MODeLING.Vis: Development of A Protein Visualization Tool
Are there categorical differences in the protein profiles matching our mental health strata? |
Could an unsupervised learning analysis find corresponding electrophoretic signatures? |
Could MODeLING.Vis cluster proteins with a high discriminative power? |
3.2. Neuroinflammatory and Neuropeptide Panel Choice
4. Discussion
MODeLING.Vis: FAIR Principles for Scientific Data Management, Video Tutorial, and Stand-Alone Executable
5. Conclusions
MODeLING.Vis: Limitations and Future Scope
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esteves, E.; Fernandes, M.; Cruz, I.; Esteves, F.; Rosa, N.; Correia, M.J.; Barros, M. Saliva Print: Sheep saliva electrophoretic protein profile in a bioinformatics approach. Cut. Edge Pathol. 2017, 2017, 74. [Google Scholar]
- Saavedra Silva, M.; Sousa, S.; Silva, A.; Martins, J.E.; Esteves, E.; Fernandes, M.; Rosa, N.; Correia, M.J.; Barros, M. Salivary Protein Profile as a Tool for Patient Stratification in Peri-Implantitis; ITI World Symposium: Basel, Switzerland, 2017. [Google Scholar] [CrossRef]
- Henson, R.; Cetto, L. The MATLAB bioinformatics toolbox. In Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kim, J.H.; Kim, Y.W.; Kim, I.W.; Park, D.C.; Kim, Y.W.; Lee, K.H.; Ahn, W.S. Identification of candidate biomarkers using the Experion™ automated electrophoresis system in serum samples from ovarian cancer patients. Int. J. Oncol. 2013, 42, 1257–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, N.; Han, C.Y. A study of fall detection in assisted living: Identifying and improving the optimal machine learning method. J. Sens. Actuator Netw. 2021, 10, 39. [Google Scholar] [CrossRef]
- Pande, S.; Kamparia, A.; Gupta, D. Recommendations for DDOS Threats Using Tableau. In Proceedings of Data Analytics and Management; Springer: Singapore, 2022; pp. 73–84. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Nabney, I. NETLAB: Algorithms for Pattern Recognition; Springer Science & Business Media: Berlin, Germany, 2002. [Google Scholar]
- Kumar, R.; Singh, S.; Dubey, V.K. Bioinformatics Tools to Analyze Proteome and Genome Data. In Advances in the Understanding of Biological Sciences Using Next Generation Sequencing (NGS) Approaches; Springer: Cham, Switzerland, 2015; pp. 179–194. [Google Scholar]
- Ottman, N.; Davids, M.; Suarez-Diez, M.; Boeren, S.; Schaap, P.J.; dos Santos, V.A.M.; de Vos, W.M. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 2017, 83, e01014-17. [Google Scholar] [CrossRef] [Green Version]
- Hou, C.; Li, Y.; Liu, H.; Dang, M.; Qin, G.; Zhang, N.; Chen, R. Profiling the interactome of protein kinase C ζ by proteomics and bioinformatics. Proteome Sci. 2018, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Cruz, I.; Esteves, E.; Fernandes, M.; Martins, J.E.; Silva, M.; Sousa, S.; Rosa, N.; Correia, M.J.; Arrais, J.P.; Barros, M. Bringing Saliva into Research—SalivaPrint, Algorithms and Personalized Medicine; Science 2017; Science and Technology Foundation: Lisbon, Portugal, 2017. [Google Scholar]
- Cruz, I.; Esteves, E.; Fernandes, M.; Rosa, N.; Correia, M.J.; Arrais, J.P.; Barros, M. Saliva PRINT Toolkit–Protein profile evaluation and phenotype stratification. J. Proteom. 2018, 171, 81–86. [Google Scholar] [CrossRef]
- Sultana, R.; Perluigi, M.; Newman, S.F.; Pierce, W.M.; Cini, C.; Coccia, R.; Butterfield, D.A. Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer’s disease. Antioxid. Redox Signal. 2010, 12, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Symmetry. J. Wash. Acad. Sci. 1938, 28, 253–271. [Google Scholar]
- Odintsov, S.D.; Paul, T.; Banerjee, I.; Myrzakulov, R.; SenGupta, S. Unifying an asymmetric bounce to the dark energy in Chern–Simons F (R) gravity. Phys. Dark Universe 2021, 33, 100864. [Google Scholar] [CrossRef]
- Hipólito, I.; Martins, J. Mind-life continuity: A qualitative study of conscious experience. Prog. Biophys. Mol. Biol. 2017, 131, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.E.; Simões, M.; Rosa, N.; D’Alimonte, D.; Mendes, V.M.; Correia, M.J.; Barros, M.; Manadas, B. Happiness as a self state and trait of consciousness: Saliva molecular biomarkers—A brief revision. Exp. Pathol. Health Sci. Res. Clin. Teach. Soc. 2016, 8, 51–54. [Google Scholar]
- Martins, J.E.; Simões, M.; Ferreira, H.; Tavares, V.; Brito, J.; Carvalho, L.X.; Carvalho, E.N.; Castelo-Branco, M. Self-reflexive consciousness: A model for the experimental use of neurofeedback in sensorial immersion in a center for consciousness knowledge. Exp. Pathol. Health Sci. Res. Clin. Teach. Soc. 2016, 8, 55–58. [Google Scholar]
- Newell, D.B.; Tiesinga, E. The International System of Units (SI); NIST Special Publication: Gaithersburg, MD, USA, 2019; Volume 330, pp. 1–138. [Google Scholar]
- Helmenstine, A.M. Molecular Weight Definition; Tennessee at Knoxville: Knoxville, Tennessee, 2014. [Google Scholar]
- Wilkinson, M.; Dumontier, M.; Aalbersberg, I.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Soga, T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009, 69, 4918–4925. [Google Scholar] [CrossRef] [Green Version]
- Minami, Y.; Kasukawa, T.; Kakazu, Y.; Iigo, M.; Sugimoto, M.; Ikeda, S.; Ueda, H.R. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. USA 2009, 106, 9890–9895. [Google Scholar] [CrossRef] [Green Version]
- Saito, N.; Robert, M.; Kochi, H.; Matsuo, G.; Kakazu, Y.; Soga, T.; Tomita, M. Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli. J. Biol. Chem. 2009, 284, 16442–16451. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Baran, R.; Kochi, H.; Saito, N.; Suematsu, M.; Soga, T.; Nishioka, T.; Tomita, M. Math DAMP: A package for differential analysis of metabolite profiles. BMC Bioinform. 2006, 7, 530. [Google Scholar] [CrossRef] [Green Version]
- Soga, T.; Baran, R.; Suematsu, M.; Ueno, Y.; Ikeda, S.; Sakurakawa, T.; Tomita, M. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J. Biol. Chem. 2006, 281, 16768–16776. [Google Scholar] [CrossRef] [Green Version]
- Wallace, W.E.; Kearsley, A.J.; Guttman, C.M. An operator-independent approach to mass spectral peak identification and integration. Anal. Chem. 2004, 76, 2446–2452. [Google Scholar] [CrossRef]
- Reijenga, J.C.; Martens, J.H.; Giuliani, A.; Chiari, M. Pherogram normalization in capillary electrophoresis and micellar electrokinetic chromatography analysis in cases of sample matrix-induced migration time shifts. J. Chromatogr. B 2002, 770, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Starr, J.; Castro, E.; Crosas, M.; Dumontier, M.; Downs, R.R.; Duerr, R.; Clark, T. Achieving human and machine accessibility of cited data in scholarly publications. PeerJ Comput. Sci. 2015, 1, e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, C.B.; Batzoglou, S. What is the expectation-maximization algorithm? Nat. Biotechnol. 2008, 26, 897. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. In BMC Neurology; BioMed Central: London, UK, 2009; Volume 9, p. S3. [Google Scholar]
- Pardridge, W.M. Blood-brain barrier delivery. Drug Discov. Today 2007, 12, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Salameh, T.S.; Banks, W.A. Delivery of therapeutic peptides and proteins to the CNS. In Advances in Pharmacology; Academic Press: Cambridge, MA, USA, 2014; Volume 71, pp. 277–299. [Google Scholar]
- Banks, W.A. Peptides and the blood-brain barrier. Peptides 2015, 72, 16–19. [Google Scholar] [CrossRef] [Green Version]
- De Vries, H.E.; Kuiper, J.; de Boer, A.G.; Van Berkel, T.J.; Breimer, D.D. The blood-brain barrier in neuroinflammatory diseases. Pharmacol. Rev. 1997, 49, 143–156. [Google Scholar]
- Erickson, M.A.; Banks, W.A. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol. Rev. 2018, 70, 278–314. [Google Scholar] [CrossRef] [Green Version]
- Fregonese, L.; Stolk, J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J. Rare Dis. 2008, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.; Ding, M.; Wang, B.; Lu, Z.; Zhao, Q.; Shaw, K.; Yao, J. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 2014, 5, 8202. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Axelsson, J.; Machowska, A.; Heimbürger, O.; Bárány, P.; Lindholm, B.; Qureshi, A.R. Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 1163–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, N.; Correia, M.J.; Arrais, J.P.; Lopes, P.; Melo, J.; Oliveira, J.L.; Barros, M. From the salivary proteome to the OralOme: Comprehensive molecular oral biology. Arch. Oral Biol. 2012, 57, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Arrais, J.P.; Rosa, N.; Melo, J.; Coelho, E.D.; Amaral, D.; Correia, M.J.; Oliveira, J.L. OralCard: A bioinformatics tool for the study of oral proteome. Arch. Oral Biol. 2013, 58, 762–772. [Google Scholar] [CrossRef]
- Wilson, M.E.; Boumaza, I.; Bowser, R. Measurement of cystatin C functional activity in the cerebrospinal fluid of amyotrophic lateral sclerosis and control subjects. Fluids Barriers CNS 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aureli, A.; Sebastiani, P.; Del Beato, T.; Marimpietri, A.E.; Graziani, A.; Sechi, E.; Di Loreto, S. Involvement of IL-6 and IL-1 receptor antagonist on intellectual disability. Immunol. Lett. 2014, 162, 124–131. [Google Scholar] [CrossRef]
- Suzumura, A.; Ikenaka, K. (Eds.) Neuron-Glia Interaction in Neuroinflammation; Springer Science & Business Media: Berlin, Germany, 2013; Volume 7. [Google Scholar]
- Wang, Y.; Wang, M.; Yin, S.; Jang, R.; Wang, J.; Xue, Z.; Xu, T. NeuroPep: A comprehensive resource of neuropeptides. Database 2015, 2015, bav038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.M.; Chakrabarti, B.; Roberts, D.; Lai, M.C.; Suckling, J.; Baron-Cohen, S. From molecules to neural morphology: Understanding neuroinflammation in autism spectrum condition. Mol. Autism 2016, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, M.M.; Bielsky, I.F.; Young, L.J. Neuropeptides and the social brain: Potential rodent models of autism. Int. J. Dev. Neurosci. 2005, 23, 235–243. [Google Scholar] [CrossRef]
- Hipólito, I.; Martins, J.E. A “Second-Person” Model to Anomalous Social Cognition. In Schizophrenia and Common Sense; Hipólito, I., Gonçalves, J., Pereira, J., Eds.; Studies in Brain and Mind; Springer: Cham, Switzerland, 2018; Volume 12. [Google Scholar]
- D’Alimonte, D.; Lowe, D.; Nabney, I.T.; Mersinias, V.; Smith, C.P. MILVA: An interactive tool for the exploration of multidimensional microarray data. Bioinformatics 2005, 21, 4192–4193. [Google Scholar] [CrossRef] [Green Version]
- Bechhofer, S.; De Roure, D.; Gamble, M.; Goble, C.; Buchan, I. Research objects: Towards exchange and reuse of digital knowledge. Nat. Preced. 2010, 1, 1. [Google Scholar] [CrossRef]
- Consortium, U. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res. 2018, 46, D41–D47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol. 2003, 10, 980. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.E.; Simões, J.; Barros, M.; Simões, M. Pre-Molecular Assessment of Self-Processes in Neurotypical Subjects Using a Single Cognitive Behavioral Intervention Evoking Autobiographical Memory. Behav. Sci. 2022, 12, 381. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, J.E.; D’Alimonte, D.; Simões, J.; Sousa, S.; Esteves, E.; Rosa, N.; Correia, M.J.; Simões, M.; Barros, M. MODeLING.Vis: A Graphical User Interface Toolbox Developed for Machine Learning and Pattern Recognition of Biomolecular Data. Symmetry 2023, 15, 42. https://doi.org/10.3390/sym15010042
Martins JE, D’Alimonte D, Simões J, Sousa S, Esteves E, Rosa N, Correia MJ, Simões M, Barros M. MODeLING.Vis: A Graphical User Interface Toolbox Developed for Machine Learning and Pattern Recognition of Biomolecular Data. Symmetry. 2023; 15(1):42. https://doi.org/10.3390/sym15010042
Chicago/Turabian StyleMartins, Jorge Emanuel, Davide D’Alimonte, Joana Simões, Sara Sousa, Eduardo Esteves, Nuno Rosa, Maria José Correia, Mário Simões, and Marlene Barros. 2023. "MODeLING.Vis: A Graphical User Interface Toolbox Developed for Machine Learning and Pattern Recognition of Biomolecular Data" Symmetry 15, no. 1: 42. https://doi.org/10.3390/sym15010042