Hand Gesture Recognition with Symmetric Pattern under Diverse Illuminated Conditions Using Artificial Neural Network
<p>Proposed framework of sensor-based sign language gesture recognition.</p> "> Figure 2
<p>Data acquisition setup for development of case study.</p> "> Figure 3
<p>Data acquisition of ASL Images under (<b>a</b>) bright light, (<b>b</b>) ambient light, (<b>c</b>) dark light.</p> "> Figure 4
<p>ASL conversion into grey scale and segmentation.</p> "> Figure 5
<p>Case study feature and significant point’s calculation using SIFT.</p> "> Figure 6
<p>Proposed ANN classification architecture for the gesture.</p> "> Figure 7
<p>The internal design of NN architecture.</p> "> Figure 8
<p>Overview of the different ANN architectures chosen: (<b>a</b>) [4 × 4 × 3]; (<b>b</b>) [4 × 14 × 3]; (<b>c</b>) [4 × 24 × 3].</p> "> Figure 8 Cont.
<p>Overview of the different ANN architectures chosen: (<b>a</b>) [4 × 4 × 3]; (<b>b</b>) [4 × 14 × 3]; (<b>c</b>) [4 × 24 × 3].</p> "> Figure 9
<p>Performance graphs using [4 × 14 × 3] neural network architecture for gesture <b>P</b>.</p> "> Figure 10
<p>Performance graphs using [4 × 14 × 3] neural network architecture for gesture <b>A</b>.</p> "> Figure 11
<p>Performance graphs using [4 × 14 × 3] neural network architecture for gesture <b>I</b>.</p> "> Figure 12
<p>Performance graphs using [4 × 14 × 3] neural network architecture for gesture <b>R</b>.</p> "> Figure 13
<p>Confusion matrices for letter <b>P</b> on architecture [4 × 14 × 3].</p> "> Figure 14
<p>Confusion matrices for letter <b>A</b> on architecture [4 × 14 × 3].</p> "> Figure 15
<p>Confusion matrices for letter I on architecture [4 × 14 × 3].</p> "> Figure 16
<p>Confusion matrices for letter <b>R</b> on architecture [4 × 14 × 3].</p> "> Figure 17
<p>Performance graphs using [4 × 14 × 3] neural network architecture for the gestures A−Z.</p> "> Figure 18
<p>Confusion matrices for letters A–Z on the architecture [4 × 14 × 3].</p> ">
Abstract
:1. Introduction
- Firstly, we proposed a symmetry-pattern-based gesture recognition framework that works well in diverse illumination lighting effects.
- Secondly, the dataset is created based on 26 American Sign Language (ASL) hand gesture images under diverse illumination conditions. Then, an efficient method for gesture feature extraction is used that is based on luminosity-based grey-scale image conversion and perimeter feature extraction.
- Thirdly, segmentation and identifying the significant points to enhance the number of Scale-Invariant Feature Transform (SIFT) key points and minimized the time taken for key point localization within features.
- Then, the gesture recognition process is validated by different Artificial Neural Network (ANN) architectures to enhance the recognition accuracy rate and avoid any uncertainty management in decision-making.
- Finally, a comparison has been performed between our work and other available researchers’ published work in a similar domain to show the efficiency of our proposed framework process.
2. Literature Review
3. Materials and Methods
Algorithm 1: SIFT Keypoints Generation |
1: Gaussian scale-space computation 2: Input: i image 3: Output: s scale-space |
4: Difference of Gaussians (DoG) 5: Input: s scale-space 6: Output: d DoG |
7: Finding keypoints (extrema of DoG) 8: Input: d DoG 9: Output: {(rd, cd, αd)} list of discrete extrema (position and scale) |
10: Keypoints localization to sub-pixel precision 11: Input: d DoG and {(rd, cd, αd)} discrete extrema 12: Output: {(r, c, α)} extreme points |
13: Filter unstable extrema 14: Input: d DoG and {(r, c, α)} 15: Output: {(r, c, α)} filtered keypoints |
16: Filter poorly localized keypoints on edges 17: Input: d DoG and {(r, c, α)} 18: Output: {(r, c, α)} filtered keypoints |
19: Assign a reference orientation to each keypoint 20: Input: (∂mv, ∂nv) scale-space gradient and {(r, c, α)} list of keypoints 21: Output: {(x, y, α, θ)} list of oriented keypoints |
22: SIFT Feature descriptor generator 23: Input: (∂mv, ∂nv) scale-space gradient and {(x, y, α, θ)} list of keypoints 24: Output: {(r, c, 1: α, θ, f)} list of described keypoints |
4. Experimentation and Results
- [1; 0; 0]: Hand Natural Position;
- [0; 1; 0]: Hand Gestural Position;
- [0; 0; 1]: Hand Unknown Position.
NN Steps | Artificial Neural Network Structure for Performance Matrices |
---|---|
Network Mode | FFNN |
Learning Pattern | Back Propagation |
Training Goal | 0.001 |
Input data | Four inputs of 1D ANN matrix where all data were placed in each image’s class for recognition process index |
No. of neurons in hidden layer | Diverse N architectures are used with different values of neurons inside hidden layer. For example, [4 × 4 × 3], [4 × 14 × 3] and [4 × 24 × 3] (see Figure 9). |
Vector of classes for the target outputs | Mathematical matrices refer to the classified vector classes with value 0 or 1. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmud, H.; Hasan, M.K.; al Tariq, A.; Kabir, M.H.; Mottalib, M.A. Recognition of Symbolic Gestures Using Depth Information. Adv. Hum.-Comput. Interact. 2018, 2018, 1069823. [Google Scholar] [CrossRef]
- Sagayam, K.M.; Andrushia, A.D.; Ghosh, A.; Deperlioglu, O.; Elngar, A.A. Recognition of Hand Gesture Image Using Deep Convolutional Neural Network. Int. J. Image Graph. 2022, 22, 2140008. [Google Scholar] [CrossRef]
- Khan, N.S.; Abid, A.; Abid, K. A Novel Natural Language Processing (NLP)–Based Machine Translation Model for English to Pakistan Sign Language Translation. Cogn. Comput. 2020, 12, 748–765. [Google Scholar] [CrossRef]
- Rezende, T.M.; Almeida, S.G.M.; Guimarães, F.G. Development and validation of a Brazilian sign language database for human gesture recognition. Neural Comput. Appl. 2021, 33, 10449–10467. [Google Scholar] [CrossRef]
- Van, Q.P.; Binh, N.T. Vietnamese Sign Language Recognition using Dynamic Object Extraction and Deep Learning. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics, Phu Quoc Island, Vietnam, 13–15 January 2021; pp. 402–407. [Google Scholar]
- Mustafa, M. A study on Arabic sign language recognition for differently abled using advanced machine learning classifiers. J. Ambient Intell. Humaniz. Comput. 2021, 12, 4101–4115. [Google Scholar] [CrossRef]
- Moh, A.; Wahyu, C.; Ariyanto, M.; Mol, M.; Setiawan, J.D.; Glowacz, D. Pattern Recognition of Single-Channel sEMG Signal Using PCA and ANN Method to Classify Nine. Symmetry 2020, 12, 541. [Google Scholar]
- Nemati, H.; Fan, Y.; Alonso-fernandez, F. Hand Detection and Gesture Recognition Using Symmetric Patterns. Stud. Comput. Intell. 2016, 642, 365–375. [Google Scholar]
- Zhang, Q.; Feng, L.; Liang, H.; Yang, Y. Hybrid Domain Attention Network for Efficient Super-Resolution. Symmetry 2022, 14, 697. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, J.; Liu, Y.; Han, Y. Image Translation for Oracle Bone Character Interpretation. Symmetry 2022, 14, 743. [Google Scholar] [CrossRef]
- Karbasi, M.; Zabidi, A.; Yassin, I.M.; Waqas, A.; Bhatti, Z.; Alam, S. Malaysian Sign Language Dataset for Automatic Sign Language Recognition System. J. Fundam. Appl. Sci. 2017, 9, 459–474. [Google Scholar] [CrossRef]
- Pariwat, T.; Seresangtakul, P. Multi-Stroke Thai Finger-Spelling Sign Language Recognition System with Deep Learning. Symmetry 2021, 13, 262. [Google Scholar] [CrossRef]
- Wen, R.; Tay, W.L.; Nguyen, B.P.; Chng, C.B.; Chui, C.K. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput. Methods Programs Biomed. 2014, 116, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.P.; Tay, W.L.; Chui, C.K. Robust Biometric Recognition from Palm Depth Images for Gloved Hands. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 799–804. [Google Scholar] [CrossRef]
- Oudah, M.; Al-Naji, A.; Chahl, J. Hand Gesture Recognition Based on Computer Vision: A Review of Techniques. J. Imaging 2020, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Sagayam, K.M.; Hemanth, D.J. A probabilistic model for state sequence analysis in hidden Markov model for hand gesture recognition. Comput. Intell. 2019, 35, 59–81. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Wu, X.Y. A hand gesture recognition algorithm based on DC-CNN. Multimed. Tools Appl. 2020, 79, 9193–9205. [Google Scholar] [CrossRef]
- Saqlain Shah, S.M.; Abbas Naqvi, H.; Khan, J.I.; Ramzan, M.; Zulqarnain; Khan, H.U. Shape based Pakistan sign language categorization using statistical features and support vector machines. IEEE Access 2018, 6, 59242–59252. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z.; Li, Z.; Tang, H.; Qu, S.; Ren, K.; Knoll, A. A Novel Illumination-Robust Hand Gesture Recognition System with Event-Based Neuromorphic Vision Sensor. IEEE Trans. Autom. Sci. Eng. 2021, 18, 508–520. [Google Scholar] [CrossRef]
- Mahmood, A.; Khan, S.A.; Hussain, S.; Almaghayreh, E.M. An Adaptive Image Contrast Enhancement Technique for Low-Contrast Images. IEEE Access 2019, 7, 161584–161593. [Google Scholar] [CrossRef]
- Al Delail, B.; Bhaskar, H.; Zemerly, M.J.; Werghi, N. Balancing Incident and Ambient Light for Illumination Compensation in Video Applications. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1762–1766. [Google Scholar] [CrossRef]
- Yu, W.; Lei, B.; Ng, M.K.; Cheung, A.C.; Shen, Y.; Wang, S. Tensorizing GAN With High-Order Pooling for Alzheimer’s Disease Assessment. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4945–4959. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Lei, B.; Wang, S.; Chui, C.K.; Cheung, A.C.; Liu, Y.; Gan, M.; Wu, G.; Shen, Y. Fine Perceptive GANs for Brain MR Image Super-Resolution in Wavelet Domain. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gozzi, N.; Malandri, L.; Mercorio, F.; Pedrocchi, A. XAI for myo-controlled prosthesis: Explaining EMG data for hand gesture classification. Knowl.-Based Syst. 2022, 240, 108053. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, A.; Zhou, M.; Wang, W.; Yang, X. A novel detection and recognition method for continuous hand gesture using fmcw radar. IEEE Access 2020, 8, 167264–167275. [Google Scholar] [CrossRef]
- Xi, L.; Chen, W.; Zhao, C.; Wu, X.; Wang, J. Image Enhancement for Remote Photoplethysmography in a Low-Light Environment. In Proceedings of the 15th IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires, Argentina, 16–20 November 2020; pp. 761–764. [Google Scholar] [CrossRef]
- Li, G.; Tang, H.; Sun, Y.; Kong, J.; Jiang, G.; Jiang, D.; Tao, B.; Xu, S.; Liu, H. Hand gesture recognition based on convolution neural network. Clust. Comput. 2019, 22, 2719–2729. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T.; Wang, X. Human hand gesture recognition with convolutional neural networks for K-12 double-teachers instruction mode classroom. Infrared Phys. Technol. 2020, 111, 103464. [Google Scholar] [CrossRef]
- Al-Hammadi, M.; Muhammad, G.; Abdul, W.; Alsulaiman, M.; Bencherif, M.A.; Mekhtiche, M.A. Hand Gesture Recognition for Sign Language Using 3DCNN. IEEE Access 2020, 8, 79491–79509. [Google Scholar] [CrossRef]
- Mujahid, A.; Awan, M.J.; Yasin, A.; Mohammed, M.A.; Damaševičius, R.; Maskeliūnas, R.; Abdulkareem, K.H. Real-time hand gesture recognition based on deep learning YOLOv3 model. Appl. Sci. 2021, 11, 4164. [Google Scholar] [CrossRef]
- Al-Hammadi, M.; Muhammad, G.; Abdul, W.; Alsulaiman, M.; Bencherif, M.A.; Alrayes, T.S.; Mathkour, H.; Mekhtiche, M.A. Deep learning-based approach for sign language gesture recognition with efficient hand gesture representation. IEEE Access 2020, 8, 192527–192542. [Google Scholar] [CrossRef]
- Tan, Y.S.; Lim, K.M.; Lee, C.P. Hand gesture recognition via enhanced densely connected convolutional neural network. Expert Syst. Appl. 2021, 175, 114797. [Google Scholar] [CrossRef]
- Pinto, R.F.; Borges, C.D.B.; Almeida, A.M.A.; Paula, I.C. Static Hand Gesture Recognition Based on Convolutional Neural Networks. J. Electr. Comput. Eng. 2019, 2019, 4167890. [Google Scholar] [CrossRef]
- Pin, X.; Chunrong, Z.; Gang, H.; Yu, Z. Object Intelligent Detection and Implementation Based on Neural Network and Deep Learning. In Proceedings of the 2020 International Conference on Computer Engineering and Application ICCEA 2020, Guangzhou, China, 18–20 March 2020; pp. 333–338. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Rey-Otero, I.; Delbracio, M. Anatomy of the SIFT method. Image Process. Line 2014, 4, 370–396. [Google Scholar] [CrossRef]
- Gopal, P.; Gesta, A.; Mohebbi, A. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models. Sensors 2022, 22, 3650. [Google Scholar] [CrossRef] [PubMed]
Paper | # of Gestures | Technique | Lighting Changes | Background |
---|---|---|---|---|
[18] | 10 | DC-CNN | 2-Variant | Redundant |
[28] | 8 | CNN | N/A | Cluttered |
[29] | 10 | ANN | 2-Variant | Colourful |
[30] | 8 | 3D-CNN | variant | Occlusion |
[31] | 24 | Darknet | 2-Variant | N/A |
[32] | 40 | D Learn | 2-Variant | Cluttered |
[33] | 24 | DC-CNN | Dissimilar | Noise |
[34] | 24 | ANN | Artificial | Cluttered |
Resolution | Average Processing Time (Sec) | ||
---|---|---|---|
Bright Light | Ambient Light | Dark Light | |
260 × 175 | 2.38 | 2.24 | 2.34 |
320 × 240 | 2.50 | 2.20 | 2.46 |
640 × 480 | 2.58 | 2.24 | 2.25 |
800 × 600 | 2.21 | 2.18 | 2.41 |
1024 × 768 | 2.28 | 2.21 | 2.35 |
2048 × 1540 | 2.28 | 2.36 | 2.32 |
4160 × 3120 | 2.39 | 2.50 | 2.84 |
Features | P | A | I | R | |
---|---|---|---|---|---|
F1 | 348.57 | 335.12 | 278.37 | 433.92 | |
µ | 18744.8 | 11651.6 | 13358.49 | 28356.31 | |
σ | 136.91 | 107.94 | 115.57 | 168.39 | |
AD | 108.64 | 76.01 | 91.82 | 125.29 | |
F2 | 362.96 | 317.5 | 432.61 | 402.57 | |
µ | 17503.4 | 5888.75 | 10446.19 | 5307.95 | |
σ | 132.30 | 76.73 | 102.20 | 72.85 | |
AD | 103.22 | 70.75 | 76.43 | 43.01 | |
F3 | 456.12 | 392.47 | 457.19 | 413.45 | |
µ | 3845.16 | 9542.87 | 1481.61 | 5662.65 | |
σ | 62.00 | 97.68 | 38.49 | 75.25 | |
AD | 47.56 | 79.88 | 30.47 | 63.90 | |
F4 | 494.23 | 527.55 | 519.97 | 540.97 | |
µ | 5157.58 | 4899.46 | 3547.31 | 6015.84 | |
σ | 71.81 | 69.99 | 59.55 | 77.56 | |
AD | 61.92 | 57.36 | 48.78 | 67.11 |
Arch | Sample | MSE | No. of Epoch | Accuracy | Classification Error |
---|---|---|---|---|---|
[4 × 4 × 3] | F1 | 7.56 × 10−2 | 70 | 93.6 | 6.4 |
F2 | 7.22 × 10−2 | 62 | 92.7 | 7.3 | |
F3 | 6.56 × 10−2 | 72 | 93.1 | 6.9 | |
F4 | 7.22 × 10−2 | 98 | 93.9 | 6.1 | |
[4 × 14 × 3] | F1 | 8.96 × 10−2 | 114 | 96.7 | 3.3 |
F2 | 8.75 × 10−2 | 122 | 96.8 | 3.2 | |
F3 | 7.5 × 10−2 | 130 | 97.4 | 2.6 | |
F4 | 9.28 × 10−2 | 125 | 97.1 | 2.9 | |
[4 × 24 × 3] | F1 | 7.65 × 10−2 | 372 | 93.7 | 6.3 |
F2 | 6.22 × 10−2 | 304 | 92.8 | 7.2 | |
F3 | 7.90 × 10−2 | 385 | 90.9 | 9.1 | |
F4 | 7.56 × 10−2 | 374 | 90.4 | 9.6 |
Paper | # of Gestures | Test Image | Frame Resolution | Recognition Time (sec) | Technique | Accuracy (%) | Error Rate (%) |
---|---|---|---|---|---|---|---|
[18] | 10 | 400 | 128 × 128 | 0.4 | DC-CNN | 94.8 | 5.2 |
[25] | 8 | 195 | 320 × 240 | 0.09–0.11 | CNN | 93.9 | 6.1 |
[26] | 10 | 600 | 512 × 424 | 0.133 | ANN | 95.6 | 4.4 |
[27] | 8 | 220 | 112 × 112 | 0.03 | 3D-CNN | 95.8 | 4.2 |
[28] | 24 | 300 | 416 × 416 | 0.0666 | Darknet | 96.7 | 3.3 |
[29] | 40 | 90 | 112 × 112 | N/A | D Learn | 96.2 | 3.8 |
[30] | 24 | 66 | 320 × 240 | N/A | DC-CNN | 94.5 | 5.5 |
[31] | 24 | 135 | 400 × 400 | 0.19 | ANN | 95.7 | 4.3 |
Our work | 26 | 800 | 1024 × 768 | 0.013 | ANN | 97.4 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haroon, M.; Altaf, S.; Ahmad, S.; Zaindin, M.; Huda, S.; Iqbal, S. Hand Gesture Recognition with Symmetric Pattern under Diverse Illuminated Conditions Using Artificial Neural Network. Symmetry 2022, 14, 2045. https://doi.org/10.3390/sym14102045
Haroon M, Altaf S, Ahmad S, Zaindin M, Huda S, Iqbal S. Hand Gesture Recognition with Symmetric Pattern under Diverse Illuminated Conditions Using Artificial Neural Network. Symmetry. 2022; 14(10):2045. https://doi.org/10.3390/sym14102045
Chicago/Turabian StyleHaroon, Muhammad, Saud Altaf, Shafiq Ahmad, Mazen Zaindin, Shamsul Huda, and Sofia Iqbal. 2022. "Hand Gesture Recognition with Symmetric Pattern under Diverse Illuminated Conditions Using Artificial Neural Network" Symmetry 14, no. 10: 2045. https://doi.org/10.3390/sym14102045
APA StyleHaroon, M., Altaf, S., Ahmad, S., Zaindin, M., Huda, S., & Iqbal, S. (2022). Hand Gesture Recognition with Symmetric Pattern under Diverse Illuminated Conditions Using Artificial Neural Network. Symmetry, 14(10), 2045. https://doi.org/10.3390/sym14102045