Numerical Investigation on the Symmetric Breakup of Bubble within a Heated Microfluidic Y-Junction
<p>Illustration of the bubble motion within a heated microfluidic Y-junction.</p> "> Figure 2
<p>Verifications of hydrodynamic model (<b>a</b>,<b>b</b>) and phase change model (<b>c</b>,<b>d</b>). Xu et al. [<a href="#B46-symmetry-14-01661" class="html-bibr">46</a>]; Magnini et al. [<a href="#B47-symmetry-14-01661" class="html-bibr">47</a>].</p> "> Figure 3
<p>Time-lapse images of the bubble profiles at different <span class="html-italic">Re</span> and <span class="html-italic">q</span>.</p> "> Figure 4
<p>Sketch of bubble profiles (<b>a</b>) and the time variation of bubble neck thickness (<b>b</b>).</p> "> Figure 5
<p>Time variation of dimensionless bubble volume at different <span class="html-italic">Re</span> (<b>a</b>) and <span class="html-italic">q</span> (<b>b</b>).</p> "> Figure 6
<p>Streamline profile and detailed velocity field for both single-phase and two-phase cases.</p> "> Figure 7
<p>Time-lapse images of the temperature field at different <span class="html-italic">Re</span> and <span class="html-italic">q</span>.</p> "> Figure 8
<p>Time variation of the local Nusselt number. (<b>a</b>–<b>c</b>) show the bubble profiles. (<b>d</b>–<b>f</b>), (<b>g</b>–<b>i</b>), and (<b>j</b>–<b>l</b>) respectively correspond to the instants of bubble nose locating at 1 <span class="html-italic">W</span>, 3 <span class="html-italic">W</span>, and 7 <span class="html-italic">W</span>.</p> "> Figure 9
<p>Time variation of the averaged Nusselt number for different walls. (<b>a</b>–<b>d</b>), (<b>e</b>–<b>h</b>) respectively show the effects of <span class="html-italic">Re</span> and <span class="html-italic">q</span> on the averaged Nusselt number.</p> "> Figure 9 Cont.
<p>Time variation of the averaged Nusselt number for different walls. (<b>a</b>–<b>d</b>), (<b>e</b>–<b>h</b>) respectively show the effects of <span class="html-italic">Re</span> and <span class="html-italic">q</span> on the averaged Nusselt number.</p> "> Figure 10
<p>Time-averaged heat transfer enhancement for the microfluidic Y-junction versus <span class="html-italic">Re</span> (<b>a</b>) and <span class="html-italic">q</span> (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Problem Description and Mathematical Model
2.1. Problem Description
2.2. Mathematical Model
3. Verification of the Numerical Model
4. Results and Discussion
4.1. Bubble Behaviors and Flow Characteristics
4.2. Two-Phase Heat Transfer Performance
4.2.1. Transient Heat Transfer
4.2.2. Time Variation of Heat Transfer
4.2.3. Heat Transfer Enhancement
5. Conclusions
- Bubble breakup behaviors were significantly affected by evaporation. The “breakup with tunnel” and “breakup with obstruction” modes respectively occurred at low and high q. The bubble successively experienced long-period squeezing stage and short-period pinch-off stage during the breakup process, where the breakup rate under pin-off stage was much larger. Along with increase in Re, the bubble broke more rapidly, and the critical neck thickness tended to decrease. The influence of heat flux on the breakup was weak. The downstream fluid accelerated more obviously at smaller Re and higher q. The bubble annihilated the vortices existing within the divergence region and made the fluid flow more uniform.
- The evaporating heat transfer was affected by bubble behaviors. Compared to the single-phase case, the heat transfer was drastically improved due to the evaporation under two-phase case. The most significant enhancement occurred at the leeward wall. The increase in Re promoted single-phase convective heat transfer while hindering the two-phase heat transfer. Slight negative enhancement of heat transfer existed at lower q. In addition, the phenomenon of heat transfer deterioration was observed at higher q. Generally, the heat transfer was enhanced as q was increased.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Z.; Yan, Y.; Zhang, Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 2021, 216, 119223. [Google Scholar] [CrossRef]
- Yao, C.; Zhao, Y.; Ma, H.; Liu, Y.; Zhao, Q.; Chen, G. Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models. Chem. Eng. Sci. 2021, 229, 116017. [Google Scholar] [CrossRef]
- Seo, J.-H.; Patil, M.S.; Panchal, S.; Lee, M.-Y. Numerical Investigations on Magnetohydrodynamic Pump Based Microchannel Cooling System for Heat Dissipating Element. Symmetry 2020, 12, 1713. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, F.; Wang, H. Boiling regimes in uncoated polydimethylsiloxane microchannels with a fine wire heater. Heat Mass Transfer. 2010, 46, 1253–1260. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Zhou, W.; Deng, L.; Yan, Y. Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices. Energy Convers. Manag. 2019, 187, 221–231. [Google Scholar] [CrossRef]
- Yan, Z.; Huang, H.; Li, S.; Wang, W.; Pan, Z. Three-dimensional numerical study on evaporating two-phase flow in heated micro T-junction. Chem. Eng. Sci. 2022, 250, 117375. [Google Scholar] [CrossRef]
- Lou, Q.; Li, T.; Yang, M. Numerical simulation of the bubble dynamics in a bifurcated micro-channel using the lattice Boltzmann method. J. Appl. Phys. 2019, 126, 034301. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Pang, Y. Droplet breakup in an asymmetric bifurcation with two angled branches. Chem. Eng. Sci. 2018, 188, 11–17. [Google Scholar] [CrossRef]
- Wang, H. From contact line structures to wetting dynamics. Langmuir 2019, 35, 10233–10245. [Google Scholar] [CrossRef]
- Fei, Y.; Zhu, C.; Fu, T.; Gao, X.; Ma, Y. The breakup dynamics of bubbles stabilized by nanoparticles in a microfluidic Y-junction. Chem. Eng. Sci. 2021, 245, 116867. [Google Scholar] [CrossRef]
- Lim, A.E.; Lim, C.Y.; Lam, Y.C.; Lim, Y.H. Effect of microchannel junction angle on two-phase liquid-gas Taylor flow. Chem. Eng. Sci. 2019, 202, 417–428. [Google Scholar] [CrossRef]
- Liu, Z.-M.; Liu, L.-K.; Shen, F. Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels. Acta Mech. Sin. 2015, 31, 741–749. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Wang, X.; Zhu, C.; Fu, T.; Ma, Y. Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Adv. 2016, 6, 778–785. [Google Scholar] [CrossRef]
- Deka, D.K.; Boruah, M.P.; Pati, S.; Randive, P.R.; Mukherjee, P.P. Tuning the splitting behavior of droplet in a bifurcating channel through wettability-capillarity interaction. Langmuir 2020, 36, 10471–10489. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Koh, K.S.; Yew, M.; Chin, J.K.; Chan, Y.; Yan, Y. Droplet breakup dynamics in bi-layer bifurcating microchannel. Micromachines 2018, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Ma, Y.; Jin, T.; Wang, J. Effects of topological changes in microchannel geometries on the asymmetric breakup of a droplet. Microfluid. Nanofluid. 2016, 20, 107. [Google Scholar] [CrossRef]
- Wang, X.; Hirano, H.; Xie, G.; Xu, D. VOF modeling and analysis of the segmented flow in Y-shaped microchannels for microreactor systems. Adv. High Energy Phys. 2013, 2013, 732682. [Google Scholar] [CrossRef]
- Yan, Z.; Pan, Z. Dynamics and phase change heat transfer of an isolated vapor bubble traveling through a heated T-shaped branching microchannel. Int. J. Heat Mass Transf. 2020, 160, 120186. [Google Scholar] [CrossRef]
- Yan, Z.; Li, L.; Pan, Z. Breakup regime and heat transfer of a vapor bubble within T-shaped branching microchannel. Int. J. Heat Mass Transf. 2021, 175, 121344. [Google Scholar] [CrossRef]
- Tiwari, N.; Moharana, M.K. Conjugate heat transfer analysis of liquid-vapor two phase flow in a microtube: A numerical investigation. Int. J. Heat Mass Transf. 2019, 142, 118427. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Ji, W.; Liu, Y.; Liu, L.; Tao, W.-Q. Lattice Boltzmann mesoscopic modeling of flow boiling heat transfer processes in a microchannel. Appl. Therm. Eng. 2021, 197, 117369. [Google Scholar] [CrossRef]
- Chen, J.; Ahmad, S.; Deng, W.; Cai, J.; Zhao, J. Micro/nanoscale surface on enhancing the microchannel flow boiling performance: A Lattice Boltzmann simulation. Appl. Therm. Eng. 2022, 205, 118036. [Google Scholar] [CrossRef]
- Qiu, J.; Zhou, J.; Zhao, Q.; Qin, H.; Chen, X. Numerical investigation of flow boiling characteristics in cobweb-shaped microchannel heat sink. Case Stud. Therm. Eng. 2021, 28, 101677. [Google Scholar] [CrossRef]
- Li, W.; Luo, K.; Li, C.; Joshi, Y. A remarkable CHF of 345 W/cm2 is achieved in a wicked-microchannel using HFE-7100. Int. J. Heat Mass Transf. 2022, 187, 122527. [Google Scholar] [CrossRef]
- Qiu, J.; Zhao, Q.; Lu, M.; Zhou, J.; Hu, D.; Qin, H.; Chen, X. Experimental study of flow boiling heat transfer and pressure drop in stepped oblique-finned microchannel heat sink. Case Stud. Therm. Eng. 2022, 30, 101745. [Google Scholar] [CrossRef]
- Yuan, B.; Liu, L.; Cui, C.; Fang, J.; Zhang, Y.; Wei, J. Micro-pin-finned surfaces with fractal treelike hydrophilic networks for flow boiling enhancement. ACS Appl. Mater. Interfaces 2021, 13, 48189–48195. [Google Scholar] [CrossRef]
- Yin, L.; Jiang, P.; Xu, R.; Hu, H. Water flow boiling in a partially modified microgap with shortened micro pin fins. Int. J. Heat Mass Transf. 2020, 155, 119819. [Google Scholar] [CrossRef]
- Deng, D.; Zeng, L.; Sun, W.; Pi, G.; Yang, Y. Experimental study of flow boiling performance of open-ring pin fin microchannels. Int. J. Heat Mass Transf. 2021, 167, 120829. [Google Scholar] [CrossRef]
- Xia, G.; Cheng, Y.; Cheng, L.; Li, Y. Heat transfer characteristics and flow visualization during flow boiling of acetone in semi-open multi-microchannels. Heat Transf. Eng. 2018, 40, 1349–1362. [Google Scholar] [CrossRef] [Green Version]
- Vontas, K.; Andredaki, M.; Georgoulas, A.; Miché, N.; Marengo, M. The effect of surface wettability on flow boiling characteristics within microchannels. Int. J. Heat Mass Transf. 2021, 172, 121133. [Google Scholar] [CrossRef]
- Zhao, Q.; Qiu, J.; Zhou, J.; Lu, M.; Li, Q.; Chen, X. Visualization study of flow boiling characteristics in open microchannels with different wettability. Int. J. Heat Mass Transf. 2021, 180, 121808. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Lee, D.; Lee, N.; Yun, M.; Cho, H.H. Enhancement of flow boiling heat transfer using heterogeneous wettability patterned surfaces with varying inter-spacing. Int. J. Heat Mass Transf. 2021, 164, 120596. [Google Scholar] [CrossRef]
- Lin, Y.; Luo, Y.; Li, J.; Li, W. Heat transfer, pressure drop and flow patterns of flow boiling on heterogeneous wetting surface in a vertical narrow microchannel. Int. J. Heat Mass Transf. 2021, 172, 121158. [Google Scholar] [CrossRef]
- Criscuolo, G.; Markussen, W.B.; Meyer, K.E.; Kærn, M.R. High heat flux flow boiling of R1234yf, R1234ze(E) and R134a in high aspect ratio microchannels. Int. J. Heat Mass Transf. 2022, 186, 122215. [Google Scholar] [CrossRef]
- Qi, Z.; Jia, L.; Dang, C.; Zhang, Y. Liquid mass transfer characteristics of zeotropic mixtures of R134a/R245fa during flow boiling in a rectangular channel. Int. J. Heat Mass Transf. 2022, 187, 122551. [Google Scholar] [CrossRef]
- Kingston, T.A.; Olson, B.D.; Weibel, J.A.; Garimella, S.V. Transient flow boiling and maldistribution characteristics in heated parallel channels induced by flow regime oscillations. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 10. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, Y.; Liu, Y.; Zhou, L.; Shen, C.; Chen, D. An experimental investigation on the characteristics of flow instability with the evolution of two-phase interface morphology. Int. J. Heat Mass Transf. 2019, 138, 468–482. [Google Scholar] [CrossRef]
- Alugoju, U.K.; Dubey, S.K.; Javed, A. 3D Transient heat transfer analysis and flow visualization study in diverging microchannel for instability mitigated two-phase flow: A numerical study. Int. J. Heat Mass Transf. 2020, 160, 120212. [Google Scholar] [CrossRef]
- NIST. NIST Chemistry Web Book; NIST: Gaithersburg, MD, USA, 2018. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Liu, G. Seed bubble guided heat transfer in a single microchannel. Heat Transf. Eng. 2011, 32, 1031–1036. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Pan, Z.; Weibel, J.A.; Garimella, S.V. Spurious current suppression in VOF-CSF simulation of slug flow through small channels. Numer. Heat Transf. A Appl. 2014, 67, 1–12. [Google Scholar] [CrossRef]
- Pan, Z.; Weibel, J.A.; Garimella, S.V. A saturated-interface-volume phase change model for simulating flow boiling. Int. J. Heat Mass Transf. 2016, 93, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Huang, H.; Pan, W.; Deng, B.; Pan, Z. Influences of wall superheat and channel width ratio on bubble behaviors and heat transfer within a heated microchannel T-junction. Int. Commun. Heat Mass Transf. 2021, 126, 105481. [Google Scholar] [CrossRef]
- Fluent. ANSYS FLUENT 17.0: User’s Guide; ANSYS-Fluent Inc.: Canonsburg, PA, USA, 2016. [Google Scholar]
- Ziyi, X.; Taotao, F.; Chunying, Z.; Shaokun, J.; Youguang, M.; Kai, W.; Guangsheng, L. Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions. Electrophoresis 2019, 40, 376–387. [Google Scholar] [CrossRef]
- Magnini, M.; Pulvirenti, B.; Thome, J.R. Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel. Int. J. Heat Mass Transf. 2013, 59, 451–471. [Google Scholar] [CrossRef]
- Fu, T.; Ma, Y.; Funfschilling, D.; Li, H.Z. Dynamics of bubble breakup in a microfluidic T-junction divergence. Chem. Eng. Sci. 2011, 66, 4184–4195. [Google Scholar] [CrossRef]
Properties | Liquid | Vapor |
---|---|---|
ρ (kg/m3) | 1425 | 5.15 |
μ (Pa·s) | 3.56 × 10−4 | 1.11 × 10−5 |
σ (N/m) | 0.0136 | 0.0136 |
cp (kJ/(kg·K)) | 1.430 | 0.900 |
λ (W/(m·K)) | 0.0618 | 0.0103 |
hfg (kJ/kg) | 117.8 | 117.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Du, W.; Kong, B.; Wang, Z.; Cao, J.; Wang, W.; Yan, Z. Numerical Investigation on the Symmetric Breakup of Bubble within a Heated Microfluidic Y-Junction. Symmetry 2022, 14, 1661. https://doi.org/10.3390/sym14081661
Chen J, Du W, Kong B, Wang Z, Cao J, Wang W, Yan Z. Numerical Investigation on the Symmetric Breakup of Bubble within a Heated Microfluidic Y-Junction. Symmetry. 2022; 14(8):1661. https://doi.org/10.3390/sym14081661
Chicago/Turabian StyleChen, Jingbo, Wen Du, Bo Kong, Zhiguo Wang, Jun Cao, Weiran Wang, and Zhe Yan. 2022. "Numerical Investigation on the Symmetric Breakup of Bubble within a Heated Microfluidic Y-Junction" Symmetry 14, no. 8: 1661. https://doi.org/10.3390/sym14081661