Implementation of Kiosk-Type System Based on Gaze Tracking for Objective Visual Function Examination
"> Figure 1
<p>Near-point-of-convergence (npc) scaler: (<b>a</b>) Image of scaler; (<b>b</b>) Schematics of scaler’s anterior and posterior sides; (<b>c</b>) Scaler’s vertical line chart.</p> "> Figure 2
<p>Eye movement when suppression scotoma does not exist in 4 Δ BO examination: (<b>a</b>) Right eye prism (2 targets are shown); (<b>b</b>) Herring’ law; (<b>c</b>) Left eye returns to its original position.</p> "> Figure 3
<p>Eye movement when suppression scotoma is present in the right eye in the 4 Δ BO test: (<b>a</b>) No eye movement due to scotoma in the right eye; (<b>b</b>) Left eye prism; (<b>c</b>) No movement to keep an eye on the right eye due to scotoma.</p> "> Figure 4
<p>Flowchart of real-time gaze-tracking method.</p> "> Figure 5
<p>HRNet structure applied to the gaze-tracking method.</p> "> Figure 6
<p>Both horizontal and vertical endpoints of the edge of the eye and the distance between the two endpoints.</p> "> Figure 7
<p>Synthetic eye image and eye feature coordinates created with UnityEyes.</p> "> Figure 8
<p>Result of eye feature point detection and gaze vector prediction for real eye image.</p> "> Figure 9
<p>Gaze vector and angles of <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="sans-serif">φ</mi> </semantics></math> expressed in a three-dimensional coordinate system.</p> "> Figure 10
<p>Existing examination environment: (<b>a</b>) Npc examination environment; (<b>b</b>) Visual fixation examination environment; (<b>c</b>) Four prism diopter (△) base-out examination environment.</p> "> Figure 11
<p>Webcam camera (Logitech C922 PRO).</p> "> Figure 12
<p>Experimental environment of the kiosk-type objective visual function system: (<b>a</b>) Kiosk-type examination environment; (<b>b</b>) Kiosk-type npc examination environment; (<b>c</b>) Kiosk-type visual fixation examination environment; (<b>d</b>) Kiosk-type 4 △ BO examination environment.</p> "> Figure 13
<p>Comparison of npc examination results.</p> "> Figure 14
<p>Comparison of visual fixation examination results.</p> ">
Abstract
:1. Introduction
2. Examination of Visual Function
2.1. NPC Examination
2.2. Visual Fixation Examination
2.3. Four-Prism Diopter (Δ) Base-Out (BO) Examination
3. Real-Time Gaze-Tracking Equipment Based on Eye Feature Points
3.1. Overview of Real-Time Eye-Tracking Equipment Based on Eye Feature Points
3.2. Feature Map Extraction Using HRNet
3.3. Prediction of Eye Features
3.4. Gaze Vector Prediction Based on Eye Feature Points
3.5. Reduced False Positives during Eye Movements
EAR
3.6. Dataset and Data Preprocessing
4. Materials and Methods
4.1. Participants
4.2. Procedure
4.2.1. Case History
4.2.2. Manufacture and Composition of the Kiosk-Type Objective Visual Function Examination System
4.3. Research Data Analysis
5. Results
5.1. NPC Examination Results
5.2. Visual Fixation Examination Results
5.3. 4 Δ BO Examination Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jerald, J. The VR Book: Human-Centered Design for Virtual Reality. In ACM BOOKS, 1st ed.; M. Tamer Ozsu: NewYork, NY, USA, 2015; pp. 85–109. [Google Scholar]
- Gardner, J.J.; Sherman, A. Vision requirements in sport. In Sports Vision; Loran, D.F.C., MacEwan, C.J., Eds.; Butterworth-Heinemann: London, UK, 1995; pp. 167–170. [Google Scholar]
- Coffey, B.; Reichow, A.W. Optometric evaluation of the elite athletes: The pacific sports visual performance profile. Probl. Optom. 1990, 1, 32–58. [Google Scholar]
- Berman, A.M. Clinical evaluation of the athlete. Optom. Clin. 1993, 3, 1–26. [Google Scholar] [PubMed]
- Hervella, L.; Villegas, E.A.; Prieto, P.M.; Artal, P. Assessment of subjective refraction with a clinical adaptive optics visual simulator. J. Cataract Refract. Surg. 2018, 45, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, A.P.; Sirak, D.; Brautaset, R.; Dominguez-Vicent, A. Evaluation of the Performance of Algorithm-Based Methods for Subjective Refraction. J. Clin. Med. 2020, 9, 3144. [Google Scholar] [CrossRef]
- Perches, S.; Collados, M.V.; Ares, J. Repeatability and Reproducibility of Virtual Subjective Refraction. Optom. Vis. Sci. 2016, 93, 1243–1253. [Google Scholar] [CrossRef]
- Anderson, H.A.; Ravikumar, A.; Benoit, J.S.; Marsack, J.D. Impact of Pupil Diameter on Objective Refraction Determination and Predicted Visual Acuity. Transl. Vis. Sci. Technol. 2019, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, R. Objective refraction from aberrometry: Theory. J. Biomed. Opt. 2009, 14, 024021. [Google Scholar] [CrossRef]
- Garzón, N.; Poyales, F.; Garcia-Montero, M.; Vega, F.; Millán, M.S.; Albarrán-Diego, C. Impact of Lens Material on Objective Refraction in Eyes with Trifocal Diffractive Intraocular Lenses. Curr. Eye Res. 2021, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Salchow, D.J.; Zirm, M.E.; Stieldorf, C.; Parisi, A. Comparison of objective and subjective refraction before and after laser in situ keratomileusis. J. Cataract Refract. Surg. 1999, 25, 827–835. [Google Scholar] [CrossRef]
- Santo, A.L.; Race, M.L.; Teel, E.F. Near Point of Convergence Deficits and Treatment Following Concussion: A Systematic Review. J. Sport Rehabil. 2020, 29, 1179–1193. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, H.; Nabovati, P.; Khabazkhoob, M.; Yekta, A.; Emamian, M.H.; Fotouhi, A. Near Point of Convergence in Iranian Schoolchildren: Normative Values and Associated Factors. Strabismus 2018, 26, 126–132. [Google Scholar] [CrossRef] [PubMed]
- So, J.P. Measurement of the near point of convergence of high school students. Korean J. Vis. Sci. 2009, 11, 105–112. [Google Scholar]
- Apaev, A.V.; Tarutta, E.P. Comparative assessment of the parameters of visual fixation in amblyopia of different origin. Vestn. Oftalmol. 2020, 136, 26–31. [Google Scholar] [CrossRef]
- EAring, E.; Grönlund, M.A.; Hellström, A.; Ygge, J. Visual fixation development in children. Graefes. Arch. Clin. Exp. Ophthalmol. 2007, 245, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Frantz, K.A.; Cotter, S.A.; Wick, B.R.U.C.E. Re-evaluation of the four prism diopter base-out test. Optom. Vis. Sci. 1992, 69, 777–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancona, C.; Stoppani, M.; Odazio, V.; La Spina, C.; Corradetti, G.; Bandello, F. Stereo tests as a screening tool for strabismus: Which is the best choice? Clin. Ophthalmol. 2014, 12, 2221–2227. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5686–5696. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.; Baltrušaitis, T.; Morency, L.P.; Robinson, P.; Bulling, A. Learning an appearance-based gaze estimator from one million synthesised images. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, SC, USA, 14–17 March 2016; pp. 131–138. [Google Scholar]
- Cech, J.; Soukupova, T. Real-time eye blink detection using facial landmarks. Cent. Mach. Percept. 2016, 21st Computer Vision Winter Workshop, 1–8. Available online: https://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf (accessed on 24 February 2022).
- Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 11–14. [Google Scholar]
- Xiao, B.; Wu, H.; Wei, Y. Simple baselines for human pose estimation and tracking. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 466–481. [Google Scholar]
- Tomac, S. Monofixation syndrome and anisometropia. Ophthalmology 2002, 109, 3–4. [Google Scholar] [CrossRef]
- Ing, M.R.; Roberts, K.M.; Lin, A.; Chen, J.J. The stability of the monofixation syndrome. Am. J. Ophthalmol. 2014, 157, 248–253. [Google Scholar] [CrossRef]
- Sanz, P.M.; Osuna, V.; Gómez de Liaño Sánchez, P.; Torres, H.E.D. Surgical treatment for small-angle vertical strabismus. Strabismus 2020, 28, 181–185. [Google Scholar] [CrossRef]
- Arnold, R.W. Comparative AAPOS Validation of the Birefringent Amblyopia Screener with Isolated Small-Angle Strabismus. Clin. Ophthalmol. 2020, 14, 325–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Results | Description | Rank |
---|---|---|
Steady fixation for more than 10 s | Very strong | 5 |
Steady fixation for at least 10 s | Strong | 4 |
Steady fixation for at least 5 s | Adequate | 3 |
Steady fixation for less than 5 s or hand support needed | Weak | 2 |
Unsteady fixation almost continuously | Very weak | 1 |
Title 1 | Existing M ± SD | Kiosk-Type M ± SD | t | p-Value |
---|---|---|---|---|
NPC | 7.92 ± 3.44 | 7.68 ± 3.57 | −0.275 | 0.775 |
Existing Rank Description | Kiosk-Type Rank Description | t | p-Value | ||
---|---|---|---|---|---|
visual fixation | subject 01 | 5.00 (Very strong) | 5.00 (Very strong) | - | - |
subject 02 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 03 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 04 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 05 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 06 | 4.00 (Strong) | 4.00 (Strong) | - | - | |
subject 07 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 08 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 09 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 10 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 11 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 12 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 13 | 4.00 (Strong) | 4.00 (Strong) | - | - | |
subject 14 | 5.00 (Very strong) | 5.00 (Very strong) | - | - | |
subject 15 | 5.00 (Very strong) | 5.00 (Very strong) | - | - |
Existing Description | Kiosk-Type Description | t | p-Value | ||
---|---|---|---|---|---|
4 Δ B.O test | subject 01 | (−): Negative No Suppression | (−): Negative No Suppression | - | - |
subject 02 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 03 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 04 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 05 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 06 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 07 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 08 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 09 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 10 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 11 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 12 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 13 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 14 | (−): Negative No Suppression | (−): Negative No Suppression | - | - | |
subject 15 | (−): Negative No Suppression | (−): Negative No Suppression | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, Y.; Lee, S.; Kim, S.; Kwon, S. Implementation of Kiosk-Type System Based on Gaze Tracking for Objective Visual Function Examination. Symmetry 2022, 14, 499. https://doi.org/10.3390/sym14030499
Kim J, Lee Y, Lee S, Kim S, Kwon S. Implementation of Kiosk-Type System Based on Gaze Tracking for Objective Visual Function Examination. Symmetry. 2022; 14(3):499. https://doi.org/10.3390/sym14030499
Chicago/Turabian StyleKim, Jungho, Youngkeun Lee, Seunghyun Lee, Seunghun Kim, and Soonchul Kwon. 2022. "Implementation of Kiosk-Type System Based on Gaze Tracking for Objective Visual Function Examination" Symmetry 14, no. 3: 499. https://doi.org/10.3390/sym14030499
APA StyleKim, J., Lee, Y., Lee, S., Kim, S., & Kwon, S. (2022). Implementation of Kiosk-Type System Based on Gaze Tracking for Objective Visual Function Examination. Symmetry, 14(3), 499. https://doi.org/10.3390/sym14030499