Some New Reverse Hilbert’s Inequalities on Time Scales
Abstract
:1. Introduction
2. Preliminaries and Basic Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. Note on a Theorem of Hilbert Concerning Series of Positive Term. Proc. Lond. Math. Soci. 1925, 23, 45–46. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Al-Smadi, M.; Arqub, O.A. Computational Algorithm for Solving Fredholm Time-Fractional Partial Integro-differential Equations of Dirichlet Functions Type with Error Estimates. Appl. Math. Comput. 2019, 342, 280–294. [Google Scholar]
- Al-Smadi, M.; Dutta, H.; Hasan, S.; Momani, S. On Numerical Approximation of Atangana-Baleanu-Caputo Fractional Integro-differential Equations under Nncertainty in Hilbert Space. Math. Model. Nat. Phenom. 2021, 16, 41. [Google Scholar]
- Hasan, S.; El-Ajou, A.; Hadid, S.; Al-Smadi, M.; Momani, S. Atangana-Baleanu Fractional Framework of Reproducing Kernel Technique in Solving Fractional Population Dynamics System. Chaos Solitons Fractals 2020, 133, 109624. [Google Scholar] [CrossRef]
- Hasan, S.; Al-Smadi, M.; El-Ajou, A.; Momani, S.; Hadid, S.; Al-Zhour, Z. Numerical Approach in the Hilbert Space to Solve A fuzzy Atangana-Baleanu Fractional Hybrid System. Chaos Solitons Fractals 2021, 143, 110506. [Google Scholar] [CrossRef]
- Hölder, O. Uber einen Mittelwerthssatz, Nachr. Ges. Wiss. Gott. 1889, 38–47. [Google Scholar]
- Furuichi, S.; Minculete, N. Alternative Reverse Inequalities for Young’s Inequality. arXiv 2011, arXiv:1103.1937. [Google Scholar] [CrossRef]
- Furuichi, S. Refined Young Inequalities with Specht’s Ratio. J. Egypt. Math. Soc. 2012, 20, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, M. Specht’s Ratio in the Young Inequality. Sci. Math. Japo. 2002, 55, 583–588. [Google Scholar]
- Zhao, C.J.; Cheung, W.S. Hölder’s Reverse Inequality and its Applications. Publ. l’Inst. Math. 2016, 113, 211–216. [Google Scholar] [CrossRef]
- Zhao, C.J.; Cheung, W.S. Reverse Hilbert Type Inequalities. J. Math. Inequal. 2019, 13, 855–866. [Google Scholar] [CrossRef]
- Ahmed, A.M.; AlNemer, G.; Zakarya, M.; Rezk, H.M. Some Dynamic Inequalities of Hilbert’s Type. J. Func. Spac. 2020, 2020, 4976050. [Google Scholar] [CrossRef] [Green Version]
- Rezk, H.M.; AlNemer, G.; Abd El-Hamid, H.A.; Abdel-Aty, A.H.; Nisar, K.S.; Zakarya, M. Hilbert-Type Inequalities for Time Scale Nabla Calculus. Adv. Differ. Equ. 2020, 2020, 619. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Elsennary, H.A.; Cheung, W.-S. Some Reverse Hölder Inequalities with Specht’s Ratio on Time Scales. J. Nonlinear Sci. Appl. 2018, 11, 444–455. [Google Scholar] [CrossRef]
- Saker, S.H.; Ahmed, A.M.; Rezk, H.M.; O’Regan, D.; Agarwal, R.P. New Hilbert’s Dynamic Inequalities on Time Scales. J. Int. Appl. 2017, 40, 1017–1039. [Google Scholar]
- AlNemer, G.; Zakarya, M.; Abd El-Hamid, H.A.; Agarwal, P.; Rezk, H.M. Some Dynamic Hilbert-Type Inequality on Time Scales. Symmetry 2020, 13, 1410. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Sandor, J. Inequalities for Multiplicative Arithmetic Functions. arXiv 2011, arXiv:1105.0292. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlNemer, G.; Saied, A.I.; Zakarya, M.; Abd El-Hamid, H.A.; Bazighifan, O.; Rezk, H.M. Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry 2021, 13, 2431. https://doi.org/10.3390/sym13122431
AlNemer G, Saied AI, Zakarya M, Abd El-Hamid HA, Bazighifan O, Rezk HM. Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry. 2021; 13(12):2431. https://doi.org/10.3390/sym13122431
Chicago/Turabian StyleAlNemer, Ghada, Ahmed I. Saied, Mohammed Zakarya, Hoda A. Abd El-Hamid, Omar Bazighifan, and Haytham M. Rezk. 2021. "Some New Reverse Hilbert’s Inequalities on Time Scales" Symmetry 13, no. 12: 2431. https://doi.org/10.3390/sym13122431
APA StyleAlNemer, G., Saied, A. I., Zakarya, M., Abd El-Hamid, H. A., Bazighifan, O., & Rezk, H. M. (2021). Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry, 13(12), 2431. https://doi.org/10.3390/sym13122431