Solvent Effect on the Stability and Reverse Substituent Effect in Nitropurine Tautomers
"> Figure 1
<p>Relationships of cSAR(NO<sub>2</sub>) on 1/ε for C2- (<b>a</b>), C6- (<b>b</b>), and C8-NO<sub>2</sub> (<b>c</b>)-substituted 9H, 7H, 3H, and 1H purine tautomers.</p> "> Figure 1 Cont.
<p>Relationships of cSAR(NO<sub>2</sub>) on 1/ε for C2- (<b>a</b>), C6- (<b>b</b>), and C8-NO<sub>2</sub> (<b>c</b>)-substituted 9H, 7H, 3H, and 1H purine tautomers.</p> "> Figure 2
<p>Relative energies (<span class="html-italic">E</span><sub>rel</sub>), with respect to the 9H tautomer for studied tautomers of nitropurine for the C2 (<b>a</b>), C6 (<b>b</b>), and C8 (<b>c</b>) substitution.</p> "> Figure 2 Cont.
<p>Relative energies (<span class="html-italic">E</span><sub>rel</sub>), with respect to the 9H tautomer for studied tautomers of nitropurine for the C2 (<b>a</b>), C6 (<b>b</b>), and C8 (<b>c</b>) substitution.</p> "> Scheme 1
<p>Classification of substituent effects.</p> "> Scheme 2
<p>Structures of C2-, C6- or C8-NO<sub>2</sub>-substituted 9H, 7H, 3H, and 1H purine tautomers.</p> "> Scheme 3
<p>Possible proximities (I and II-type) of the NO<sub>2</sub> group in C2-, C6-, or C8-NO<sub>2</sub>-substituted 9H, 7H, 3H, and 1H purine tautomers.</p> ">
Abstract
:1. Introduction
2. Methodology
HOMA | NICS | |||
---|---|---|---|---|
5MR | 6MR | 5MR | 6MR | |
IM | 0.866 | −12.772 | ||
PYR | 0.976 | −5.000 | ||
9H PU | 0.757 | 0.926 | −10.971 | −7.690 |
7H PU | 0.752 | 0.915 | −11.146 | −7.952 |
3H PU | 0.680 | 0.761 | −10.029 | −7.749 |
1H PU | 0.548 | 0.602 | −9.555 | −7.051 |
3. Results and Discussion
3.1. Dependence of cSAR on the Proximity Effect
- (i)
- with two pyridine-type N atoms, i.e., with lone pairs in the plane of the molecule (I-type proximity),
- (ii)
- with one pyridine-type N atom, and one pyrrole-type NH group (II-type proximity).
3.2. Dependence of cSAR on the Type and Position in Tautomer
3.3. Dependence of cSAR on Polarity of Solvent
3.4. Geometric Parameters of the Nitro Group
3.5. Influence of Solvent on the Stability of Substituted Purine Tautomers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egli, M.; Saenger, W. Principles of Nucleic Acid Structure; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Raczyńska, E.D.; Kamińska, B.; Szeląg, M. Influence of One-Electron Oxidation and One-Electron Reduction on the Tautomeric Preferences for Purine. Anal. Bioanal. Electrochem. 2009, 1, 83–97. [Google Scholar]
- Raczyńska, E.D.; Makowski, M.; Hallmann, M.; Kamińska, B. Geometric and energetic consequences of prototropy for adenine and its structural models—A review. RSC Adv. 2015, 5, 36587–36604. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Kamińska, B. Variations of the tautomeric preferences and π-electron delocalization for the neutral and redox forms of purine when proceeding from the gas phase (DFT) to water (PCM). J. Mol. Model. 2013, 19, 3947–3960. [Google Scholar] [CrossRef] [Green Version]
- Stasyuk, O.A.; Szatyłowicz, H.; Krygowski, T.M. Effect of the H-Bonding on Aromaticity of Purine Tautomers. J. Org. Chem. 2012, 77, 4035–4045. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Kamińska, B. Prototropy and pi-electron delocalization for purine and its radical ions—DFT studies. J. Phys. Org. Chem. 2010, 23, 828–835. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Makowski, M.; Zientara-Rytter, K.; Kolczyńska, K.; Stępniewski, T.M.; Hallmann, M. Quantum-Chemical Studies on the Favored and Rare Tautomers of Neutral and Redox Adenine. J. Phys. Chem. A 2013, 117, 1548–1559. [Google Scholar] [CrossRef] [PubMed]
- Broo, A.; Holmn, A. Ab initio MP2 and DFT calculations of geometry and solution tautomerism of purine and some purine derivatives. Chem. Phys. 1996, 211, 147–161. [Google Scholar] [CrossRef]
- Lin, J.; Yu, C.; Peng, S.; Akiyama, I.; Li, K.; Lee, L.K.; Lebreton, P.R. Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine. J. Am. Chem. Soc. 1980, 102, 4627–4631. [Google Scholar] [CrossRef]
- Burova, T.G.; Ten, G.N.; Kucherova, V.V. Investigations of tautomeric purine forms by the methods of vibrational spectroscopy and resonance Raman scattering. II. Quantum-mechanical calculations of the resonance Raman scattering spectra of purine tautomers. Russ. Phys. J. 2004, 47, 721–725. [Google Scholar] [CrossRef]
- Gonnella, N.C.; Roberts, J.D. Studies of the tautomerism of purine and the protonation of purine, and its 7- and 9-methyl derivatives, by nitrogen-15 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 1982, 104, 3162–3164. [Google Scholar] [CrossRef]
- Bartl, T.; Zacharová, Z.; Kolehmainen, E.; Marek, R.; Sečkářová, P. NMR Quantification of Tautomeric Populations in Biogenic Purine Bases. Eur. J. Org. Chem. 2009, 2009, 1377–1383. [Google Scholar] [CrossRef]
- Sečkářová, P.; Marek, R.; Maliňáková, K.; Kolehmainen, E.; Hocková, D.; Hocek, M.; Sklenář, V. Direct determination of tautomerism in purine derivatives by low-temperature NMR spectroscopy. Tetrahedron Lett. 2004, 45, 6259–6263. [Google Scholar] [CrossRef]
- Dracinsky, M.; Pohl, R. NMR Studies of Purines. Annu. Rep. NMR Spectrosc. 2014, 82, 59–113. [Google Scholar] [CrossRef]
- Hammett, L.P. The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. [Google Scholar] [CrossRef]
- Szatylowicz, H.; Siodła, T.; Stasyuk, O.A.; Krygowski, T.M. Towards physical interpretation of substituent effects: The case of meta- and para-substituted anilines. Phys. Chem. Chem. Phys. 2015, 18, 11711–11721. [Google Scholar] [CrossRef]
- Stasyuk, O.; Szatylowicz, H.; Guerra, C.F.; Krygowski, T.M. Theoretical study of electron-attracting ability of the nitro group: Classical and reverse substituent effects. Struct. Chem. 2015, 26, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Sadlej-Sosnowska, N. On the way to physical interpretation of Hammett constants: How substituent active space impacts on acidity and electron distribution in p-substituted benzoic acid molecules. Pol. J. Chem. 2007, 81, 1123–1134. [Google Scholar]
- Sadlej-Sosnowska, N. Substituent active region—A gate for communication of substituent charge with the rest of a molecule: Monosubstituted benzenes. Chem. Phys. Lett. 2007, 447, 192–196. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Sadlej-Sosnowska, N. Towards physical interpretation of Hammett constants: Charge transferred between active regions of substituents and a functional group. Struct. Chem. 2011, 22, 17–22. [Google Scholar] [CrossRef]
- Charton, M. Nature of the ortho effect. II. Composition of the Taft steric parameters. J. Am. Chem. Soc. 1969, 91, 615–618. [Google Scholar] [CrossRef]
- Exner, O.; Shorter, J. The Hammett Equation-the Present Position; The Separation of Polar, Steric, and Resonance Effects by the Use of Linear Free Energy Relationships. In Advances in Linear Free Energy Relationships; Chapman, N.B., Shorter, J., Eds.; Plenum Press: London, UK, 1972; pp. 45, 103–110. [Google Scholar]
- Sayyed, F.B.; Suresh, C.H. Quantification of substituent effects using molecular electrostatic potentials: Additive nature and proximity effects. New J. Chem. 2009, 33, 2465–2471. [Google Scholar] [CrossRef]
- Exner, O.; Böhm, S. Theory of Substituent Effects: Recent Advances. Curr. Org. Chem. 2006, 10, 763–778. [Google Scholar] [CrossRef]
- Taft, R.W. Separation of polar, steric and resonance effects in reactivity. In Steric Effects in Organic Chemistry; Newman, M.S., Ed.; Wiley: Hoboken, NJ, USA, 1956; pp. 556–675. [Google Scholar]
- Szatylowicz, H.; Jezuita, A.; Ejsmont, K.; Krygowski, T.M. Classical and reverse substituent effects in meta- and para-substituted nitrobenzene derivatives. Struct. Chem. 2017, 28, 1125–1132. [Google Scholar] [CrossRef] [Green Version]
- Varaksin, K.S.; Szatylowicz, H.; Krygowski, T.M. Towards a physical interpretation of substituent effect: Quantum chemical interpretation of Hammett substituent constants. J. Mol. Struct. 2017, 1137, 581–588. [Google Scholar] [CrossRef]
- Shahamirian, M.; Szatylowicz, H.; Krygowski, T.M. How OH and O– groups affect electronic structure of meta-substituted and para-substituted phenols and phenolates. Struct. Chem. 2017, 28, 1563–1572. [Google Scholar] [CrossRef] [Green Version]
- Szatylowicz, H.; Domański, M.; Krygowski, T.M. Classical and Reverse Substituent Effects in Substituted Anthrol Derivatives. ChemistryOpen 2019, 8, 64–73. [Google Scholar] [CrossRef]
- Jabłoński, M.; Krygowski, T.M. Study of the influence of intermolecular interaction on classical and reverse substituent effects in para-substituted phenylboranes. New J. Chem. 2020, 44, 9656–9670. [Google Scholar] [CrossRef]
- Jezuita, A.; Szatylowicz, H.; Krygowski, T.M. Impact of the Substituents on the Electronic Structure of the Four Most Stable Tautomers of Purine and Their Adenine Analogues. ACS Omega 2020, 5, 11570–11577. [Google Scholar] [CrossRef]
- Hammett, L.P. Physical Organic Chemistry, Table II; McGraw–Hill: New York, NY, USA, 1940; p. 189. [Google Scholar]
- Dobrowolski, M.A.; Krygowski, T.M.; Cyrański, M.K. Substituent Constants (σp−) of the Rotated Nitro Group. The Interplay Between the Substituent Effect of a Rotated −NO2 Group and H-Bonds Affecting π-Electron Delocalization in 4-Nitrophenol and 4-Nitrophenolate Complexes: A B3LYP/6-311+G** Study. Croatica Chim. Acta 2009, 82, 139–147. [Google Scholar]
- Shorter, J. Electronic Effects of Nitro, Nitroso, Amino and Related Groups. In The Chemistry of Amino, Nitroso, Nitro and Related Groups, Chapter 11; Patai, S., Ed.; Wiley: Hoboken, NJ, USA, 1996; pp. 479–531. [Google Scholar]
- Politzer, P.; Abrahmsen, L.; Sjoberg, P. Effects of amino and nitro substituents upon the electrostatic potential of an aromatic ring. J. Am. Chem. Soc. 1984, 106, 855–860. [Google Scholar] [CrossRef]
- Irle, S.; Krygowski, T.M.; Niu, J.E.; Schwarz, W.H.E. Substituent Effects of -NO and -NO2, Groups in Aromatic Systems. J. Org. Chem. 1995, 60, 6744–6755. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Oziminski, W.P. Substituent effects in 1-nitro-4-substituted bicyclo[2.2.2]octane derivatives: Inductive or field effects? J. Mol. Model. 2014, 20, 2352–2359. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Dobrowolski, M.A.; Cyrański, M.K.; Oziminski, W.P.; Bultinck, P. Substituent effects in 1,4-disubstituted benzene and cyclohexadiene: Olefinic vs. aromatic electron shift pathway of the substituent effect. Comput. Theor. Chem. 2012, 984, 36–42. [Google Scholar] [CrossRef]
- Jezierska-Mazzarello, A.; Szatyłowicz, H.; Krygowski, T.M. Interference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes. J. Mol. Model. 2011, 18, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Krygowski, T.M.; Stȩpień, B.T. Sigma- and Pi-Electron Delocalization: Focus on Substituent Effects. Chem. Rev. 2005, 105, 3482–3512. [Google Scholar] [CrossRef]
- Siodla, T.; Szatylowicz, H.; Varaksin, K.S.; Krygowski, T.M. Difference in pi-electron delocalization for monosubstituted olefinic and aromatic systems. RSC Adv. 2016, 6, 96527–96530. [Google Scholar] [CrossRef]
- Szatylowicz, H.; Siodla, T.; Krygowski, T.M. Inductive or Field Substituent Effect? Quantum Chemical Modeling of Interactions in 1-Monosubstituted Bicyclooctane Derivatives. ACS Omega 2017, 2, 1746–1749. [Google Scholar] [CrossRef]
- Szatylowicz, H.; Jezuita, A.; Ejsmont, K.; Krygowski, T.M. Substituent Effect on the σ- and π-Electron Structure of the Nitro Group and the Ring in Meta- and Para-Substituted Nitrobenzenes. J. Phys. Chem. A 2017, 121, 5196–5203. [Google Scholar] [CrossRef]
- Szatylowicz, H.; Jezuita, A.; Siodła, T.; Varaksin, K.S.; Domański, M.; Ejsmont, K.; Krygowski, T.M. Toward the Physical Interpretation of Inductive and Resonance Substituent Effects and Reexamination Based on Quantum Chemical Modeling. ACS Omega 2017, 2, 7163–7171. [Google Scholar] [CrossRef]
- Szatylowicz, H.; Jezuita, A.; Siodla, T.; Varaksin, K.S.; Shahamirian, M.; Ejsmont, K.; Krygowski, T.M. How far the substituent effects in disubstituted cyclohexa-1,3-diene derivatives differ from those in bicyclo[2.2.2]octane and benzene? Struct. Chem. 2018, 29, 1201–1212. [Google Scholar] [CrossRef]
- Szatylowicz, H.; Stasyuk, O.A.; Guerra, C.F.; Krygowski, T.M. Effect of Intra- and Intermolecular Interactions on the Properties of para-Substituted Nitrobenzene Derivatives. Crystals 2016, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Szatylowicz, H.; Jezuita, A.; Siodła, T.; Varaksin, K.S.; Ejsmont, K.; Madura, I.D.; Krygowski, T.M. Dependence of the Substituent Effect on Solvent Properties. J. Phys. Chem. A 2018, 122, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Chermahini, A.N.; Nasr-Esfahani, M.; Dalirnasab, Z.; Dabbagh, H.A.; Teimouri, A. Theoretical studies on tautomerism of tetrazole derivatives by polarisable continuum method (PCM). J. Mol. Struct. 2007, 820, 7–11. [Google Scholar] [CrossRef]
- Shabanian, M.; Hajibeygi, M.; Moghanian, H.; Mohamadi, A. Theoretical investigation on tautomerism and NBO analysis of 3-hydroxy-1,2,5-thiadiazole derivatives: Solvent and substituent effects. Heterocycl. Commun. 2012, 18, 161–164. [Google Scholar] [CrossRef]
- Bonner, G.; Klibanov, A.M. Structural stability of DNA in nonaqueous solvents. Biotechnol. Bioeng. 2000, 68, 339–344. [Google Scholar] [CrossRef]
- Zhou, H.-X.; Pang, X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018, 118, 1691–1741. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Marek, P.H.; Szatylowicz, H.; Krygowski, T.M. Stacking of nucleic acid bases: Optimization of the computational approach—the case of adenine dimers. Struct. Chem. 2019, 30, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Miertus, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chem. Acc. 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Kruszewski, J.; Krygowski, T. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972, 13, 3839–3842. [Google Scholar] [CrossRef]
- Schleyer, P.V.R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N.J.R.V.E. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Krygowski, T.M. Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of Pi-Electron Systems. J. Chem. Inf. Comput. Sci. 1993, 33, 70–78. [Google Scholar] [CrossRef]
- Jezuita, A.; Szatylowicz, H.; Marek, P.H.; Krygowski, T.M. Aromaticity of the most stable adenine and purine tautomers in terms of Hückel’s 4N+2 principle. Tetrahedron 2019, 75, 130474. [Google Scholar] [CrossRef]
- Jezuita, A.; Wieczorkiewicz, P.A.; Szatylowicz, H.; Krygowski, T.M. Effect of Solvent and Substituent on Tautomeric Preferences of Amine-adenine Tautomers. ACS Omega 2021, in press. [Google Scholar]
- Szatylowicz, H.; Jezuita, A.; Marek, P.H.; Krygowski, T.M. Substituent effects on the stability of the four most stable tautomers of adenine and purine. RSC Adv. 2019, 9, 31343–31356. [Google Scholar] [CrossRef] [Green Version]
- Nowak, M.J.; Rostkowska, H.; Lapinski, L.; Kwiatkowski, J.S.; Leszczynski, J. Tautomerism N(9)H. dblharw. N(7)H of Purine, Adenine, and 2-Chloroadenine: Combined Experimental IR Matrix Isolation and Ab Initio Quantum Mechanical Studies. J. Phys. Chem. 1994, 98, 2813–2816. [Google Scholar] [CrossRef]
Solvent/Medium | Acronym | ε | 1/ε |
---|---|---|---|
Formamide | FA | 108.94 | 0.0092 |
Water | H2O | 78.36 | 0.0128 |
DMSO | 46.83 | 0.0214 | |
Ethanol | EtOH | 24.85 | 0.0402 |
Pyridine | Py | 12.98 | 0.0771 |
THF | 7.43 | 0.1347 | |
o-cresol | o-Cr | 6.76 | 0.1479 |
Chloroform | ClF | 4.71 | 0.2123 |
Toluene | Tol | 2.37 | 0.4212 |
Gas phase | GP | 1.00 | 1.00 |
NO2 (∥) | NO2 (⏊) | avg.⏊–avg.∥ | Δ⏊/Δ∥ | Proximity Type | |||||
---|---|---|---|---|---|---|---|---|---|
avg.∥ | Δ∥ | avg.⏊ | Δ⏊ | Δ⏊–Δ∥ | /% | ||||
C2 | 9H | −0.0627 | 0.0682 | −0.0404 | 0.0551 | 0.0222 | −0.0131 | 80.8 | I |
7H | −0.0667 | 0.0745 | −0.0481 | 0.0615 | 0.0186 | −0.0130 | 82.6 | ||
3H | 0.0237 | 0.0131 | 0.0470 | 0.0023 | 0.0233 | −0.0108 | 17.6 | II | |
1H | 0.0158 | 0.0137 | 0.0402 | 0.0023 | 0.0244 | −0.0114 | 16.8 | ||
C6 | 9H | −0.0908 | 0.0661 | −0.0540 | 0.0532 | 0.0368 | −0.0129 | 80.5 | I |
3H | −0.0830 | 0.0613 | −0.0557 | 0.0497 | 0.0273 | −0.0116 | 81.1 | ||
7H | −0.0722 | 0.0246 | −0.0411 | 0.0161 | 0.0311 | −0.0085 | 65.4 | II | |
1H | −0.0303 | 0.0104 | 0.0121 | 0.0047 | 0.0424 | −0.0057 | 45.2 | ||
C8 | 9H | −0.0136 | 0.0300 | 0.0285 | 0.0104 | 0.0421 | −0.0196 | 34.7 | II |
7H | 0.0001 | 0.0280 | 0.0350 | 0.0094 | 0.0349 | −0.0186 | 33.6 | ||
3H | −0.0819 | 0.0896 | −0.0400 | 0.0662 | 0.0418 | −0.0234 | 73.9 | I | |
1H | −0.0830 | 0.0960 | −0.0461 | 0.0739 | 0.0369 | −0.0221 | 77.0 |
NO2 Coplanar | NO2 Perpendicular | ||||||
---|---|---|---|---|---|---|---|
GP | THF | H2O | GP | THF | H2O | ||
C2 | −0.0111 | −0.0660 | −0.0789 | 0.0018 | −0.0434 | −0.0530 | |
9H | C6 | −0.0414 | −0.0937 | −0.1070 | −0.0138 | −0.0566 | −0.0666 |
C8 | 0.0092 | −0.0151 | −0.0206 | 0.0369 | 0.0277 | 0.0266 | |
C2 | −0.0107 | −0.0700 | −0.0847 | −0.0013 | −0.0512 | −0.0625 | |
7H | C6 | −0.0530 | −0.0737 | −0.0775 | −0.0425 | −0.0572 | −0.0585 |
C8 | 0.0212 | −0.0012 | −0.0066 | 0.0426 | 0.0342 | 0.0332 | |
C2 | 0.0340 | 0.0229 | 0.0210 | 0.0487 | 0.0465 | 0.0473 | |
3H | C6 | −0.0370 | −0.0858 | −0.0979 | −0.0035 | −0.0436 | −0.0529 |
C8 | −0.0146 | −0.0859 | −0.1037 | 0.0105 | −0.0435 | −0.0554 | |
C2 | 0.0267 | 0.0148 | 0.0131 | 0.0401 | 0.0399 | 0.0411 | |
1H | C6 | −0.0218 | −0.0313 | −0.0321 | 0.0098 | 0.0117 | 0.0140 |
C8 | −0.0117 | −0.0878 | −0.1071 | 0.0101 | −0.0500 | −0.0633 |
GP | FA | FA-GP 6MR | FA-GP 5MR | ||||||
---|---|---|---|---|---|---|---|---|---|
6MR | 5MR | sum | 6MR | 5MR | sum | ||||
9H * | 0.926 | 0.757 | 0.866 | ||||||
7H * | 0.915 | 0.752 | 0.867 | ||||||
3H * | 0.761 | 0.680 | 0.805 | ||||||
1H * | 0.602 | 0.548 | 0.725 | ||||||
C2 | 9H | 0.922 | 0.761 | 0.874 | 0.909 | 0.777 | 0.882 | −0.014 | 0.016 |
7H | 0.910 | 0.749 | 0.870 | 0.904 | 0.784 | 0.887 | −0.006 | 0.036 | |
3H | 0.704 | 0.622 | 0.782 | 0.742 | 0.661 | 0.806 | 0.038 | 0.039 | |
1H | 0.600 | 0.530 | 0.730 | 0.697 | 0.624 | 0.786 | 0.097 | 0.093 | |
C6 | 9H | 0.876 | 0.724 | 0.850 | 0.861 | 0.735 | 0.857 | −0.015 | 0.010 |
7H | 0.882 | 0.735 | 0.861 | 0.874 | 0.747 | 0.868 | −0.008 | 0.013 | |
3H | 0.661 | 0.560 | 0.754 | 0.703 | 0.605 | 0.785 | 0.042 | 0.045 | |
1H | 0.425 | 0.313 | 0.629 | 0.547 | 0.438 | 0.700 | 0.122 | 0.125 | |
C8 | 9H | 0.904 | 0.770 | 0.870 | 0.902 | 0.790 | 0.879 | −0.002 | 0.019 |
7H | 0.896 | 0.763 | 0.868 | 0.903 | 0.804 | 0.887 | 0.007 | 0.041 | |
3H | 0.782 | 0.730 | 0.835 | 0.833 | 0.780 | 0.869 | 0.051 | 0.050 | |
1H | 0.626 | 0.601 | 0.753 | 0.742 | 0.702 | 0.819 | 0.115 | 0.102 |
GP | THF | FA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0° | 45° | 90° | 0° | 45° | 90° | 0° | 45° | 90° | ||
C2 | 9H | 1.5311 | 1.5129 | 1.5048 | 1.5225 | 1.5100 | 1.5082 | 1.5197 | 1.5090 | 1.5091 |
7H | ||||||||||
3H | 1.4929 | 1.4923 | 1.5011 | 1.4885 | 1.4902 | 1.5011 | 1.4874 | 1.4898 | 1.5012 | |
1H | ||||||||||
C6 | 9H | 1.5142 | 1.5001 | 1.4955 | 1.5057 | 1.4974 | 1.4980 | 1.5033 | 1.4965 | 1.4985 |
3H | ||||||||||
7H | 1.4854 | 1.4908 | 1.4941 | 1.4807 | 1.4848 | 1.4944 | 1.4796 | 1.4842 | 1.4945 | |
1H | ||||||||||
C8 | 9H | 1.4655 | 1.4688 | 1.4800 | 1.4596 | 1.4651 | 1.4799 | 1.4580 | 1.4643 | 1.4800 |
7H | ||||||||||
3H | 1.4891 | 1.4806 | 1.4803 | 1.4780 | 1.4757 | 1.4824 | 1.4747 | 1.4740 | 1.4828 | |
1H |
(a) | GP | THF | FA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dNO···(H) | dNO | aver | dNO···(H) | dNO | aver | dNO···(H) | dNO | aver | ||||||||
C2 | 9H | 1.2266 | 1.2284 | 1.2275 | 1.2302 | 1.2311 | 1.2306 | 1.2312 | 1.2317 | 1.2315 | ||||||
7H | 1.2279 | 1.2267 | 1.2273 | 1.2305 | 1.2302 | 1.2303 | 1.2313 | 1.2313 | 1.2313 | |||||||
3H | 1.2427 | 1.2205 | 1.2316 | 1.2400 | 1.2244 | 1.2322 | 1.2391 | 1.2256 | 1.2324 | |||||||
1H | 1.2461 | 1.2197 | 1.2329 | 1.2417 | 1.2247 | 1.2332 | 1.2401 | 1.2263 | 1.2332 | |||||||
C6 | 9H | 1.2255 | 1.2313 | 1.2284 | 1.2293 | 1.2332 | 1.2312 | 1.2303 | 1.2339 | 1.2321 | ||||||
3H | 1.2277 | 1.2294 | 1.2285 | 1.2303 | 1.2324 | 1.2313 | 1.2308 | 1.2334 | 1.2321 | |||||||
7H | 1.2447 | 1.2199 | 1.2323 | 1.2412 | 1.2250 | 1.2331 | 1.2401 | 1.2266 | 1.2334 | |||||||
1H | 1.2465 | 1.2234 | 1.2350 | 1.2423 | 1.2281 | 1.2352 | 1.2408 | 1.2297 | 1.2352 | |||||||
C8 | 9H | 1.2423 | 1.2244 | 1.2334 | 1.2403 | 1.2291 | 1.2347 | 1.2397 | 1.2306 | 1.2352 | ||||||
7H | 1.2426 | 1.2228 | 1.2327 | 1.2396 | 1.2279 | 1.2338 | 1.2386 | 1.2296 | 1.2341 | |||||||
3H | 1.2297 | 1.2315 | 1.2306 | 1.2338 | 1.2347 | 1.2342 | 1.2351 | 1.2356 | 1.2353 | |||||||
1H | 1.2306 | 1.2300 | 1.2303 | 1.2339 | 1.2338 | 1.2339 | 1.2349 | 1.2351 | 1.2350 | |||||||
(b) | GP | THF | FA | |||||||||||||
dNO···(H) | dNO | aver | dNO···(H) | dNO | aver | dNO···(H) | dNO | aver | ||||||||
C2 | 9H | 1.2278 | 1.2278 | 1.2278 | 1.2293 | 1.2293 | 1.2293 | 1.2296 | 1.2296 | 1.2296 | ||||||
7H | 1.2278 | 1.2278 | 1.2278 | 1.2295 | 1.2295 | 1.2295 | 1.2299 | 1.2299 | 1.2299 | |||||||
3H | 1.2278 | 1.2277 | 1.2277 | 1.2274 | 1.2276 | 1.2275 | 1.2274 | 1.2274 | 1.2274 | |||||||
1H | 1.2280 | 1.2282 | 1.2281 | 1.2278 | 1.2277 | 1.2277 | 1.2277 | 1.2276 | 1.2277 | |||||||
C6 | 9H | 1.2274 | 1.2274 | 1.2274 | 1.2289 | 1.2289 | 1.2289 | 1.2293 | 1.2293 | 1.2293 | ||||||
3H | 1.2270 | 1.2270 | 1.2270 | 1.2285 | 1.2285 | 1.2285 | 1.2289 | 1.2289 | 1.2289 | |||||||
7H | 1.2291 | 1.2295 | 1.2293 | 1.2293 | 1.2292 | 1.2293 | 1.2293 | 1.2293 | 1.2293 | |||||||
1H | 1.2284 | 1.2283 | 1.2283 | 1.2282 | 1.2281 | 1.2281 | 1.2280 | 1.2279 | 1.2279 | |||||||
C8 | 9H | 1.2289 | 1.2288 | 1.2288 | 1.2289 | 1.2288 | 1.2288 | 1.2289 | 1.2289 | 1.2289 | ||||||
7H | 1.2288 | 1.2286 | 1.2287 | 1.2287 | 1.2287 | 1.2287 | 1.2287 | 1.2287 | 1.2287 | |||||||
3H | 1.2285 | 1.2285 | 1.2285 | 1.2301 | 1.2301 | 1.2301 | 1.2305 | 1.2305 | 1.2305 | |||||||
1H | 1.2285 | 1.2285 | 1.2285 | 1.2302 | 1.2302 | 1.2302 | 1.2306 | 1.2306 | 1.2306 |
Coplanar NO2 | 90° NO2 | ||||
---|---|---|---|---|---|
Tautomer | GP | FA | GP | FA | |
C2 | 9H | 0.00 | 0.00 | 0.00 | 0.00 |
7H | 3.33 | −0.34 | 2.97 | −0.50 | |
3H | 8.17 | 11.62 | 15.29 | 15.85 | |
1H | 9.69 | 9.35 | 17.83 | 14.08 | |
C6 | 9H | 0.00 | 0.00 | 0.00 | 0.00 |
7H | −4.06 | −2.11 | 2.84 | 1.49 | |
3H | 10.16 | 7.97 | 9.79 | 7.69 | |
1H | 10.34 | 9.80 | 18.26 | 14.25 | |
C8 | 9H | 0.00 | 0.00 | 0.00 | 0.00 |
7H | 3.67 | 0.87 | 3.30 | 0.29 | |
3H | 8.96 | 2.06 | 2.87 | −0.84 | |
1H | 11.55 | −0.16 | 4.82 | −3.43 |
(a) | Esol = a∙(1/ε) + b | m = a∙(1/ε) + b | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | R2 | ratio | a | R2 | ratio | ||||||||
9H | C2 | 12.9 | 0.979 | 1.53 | −2.703 | 0.976 | 2.84 | ||||||
C6 | 11.6 | 0.968 | 1.38 | −2.853 | 0.971 | 2.99 | |||||||
C8 | 8.42 | 0.974 | 1.00 | −0.953 | 0.965 | 1.00 | |||||||
7H | C2 | 16.7 | 0.971 | 1.55 | −3.858 | 0.971 | 2.14 | ||||||
C6 | 10.8 | 0.968 | 1.00 | −1.799 | 0.960 | 1.00 | |||||||
C8 | 11.3 | 0.963 | 1.05 | −2.228 | 0.950 | 1.24 | |||||||
3H | C2 | 9.36 | 0.958 | 1.00 | −0.257 | 0.914 | 1.00 | ||||||
C6 | 13.6 | 0.966 | 1.45 | −2.845 | 0.969 | 11.07 | |||||||
C8 | 15.4 | 0.976 | 1.65 | −3.484 | 0.974 | 13.55 | |||||||
1H | C2 | 13.3 | 0.966 | 1.00 | −2.531 | 0.952 | 1.00 | ||||||
C6 | 13.3 | 0.964 | 1.00 | −2.543 | 0.953 | 1.00 | |||||||
C8 | 20.3 | 0.973 | 1.53 | −5.009 | 0.966 | 1.98 | |||||||
(b) | Esol=a∙(1/ε)+b | μ=a∙(1/ε)+b | |||||||||||
a | R2 | ratio | a | R2 | ratio | ||||||||
9H | C2 | 10.6 | 0.982 | 1.23 | −2.254 | 0.981 | 2.84 | ||||||
C6 | 10.3 | 0.979 | 1.20 | −2.404 | 0.977 | 3.02 | |||||||
C8 | 8.6 | 0.977 | 1.00 | −0.795 | 0.942 | 1.00 | |||||||
7H | C2 | 14.1 | 0.974 | 1.21 | −3.424 | 0.975 | 1.84 | ||||||
C6 | 11.7 | 0.971 | 1.00 | −1.856 | 0.960 | 1.00 | |||||||
C8 | 11.7 | 0.967 | 1.00 | −2.109 | 0.950 | 1.14 | |||||||
3H | C2 | 10.0 | 0.976 | 1.00 | −0.660 | 0.894 | 1.00 | ||||||
C6 | 12.5 | 0.977 | 1.25 | −2.568 | 0.971 | 3.89 | |||||||
C8 | 12.4 | 0.980 | 1.24 | −2.824 | 0.981 | 4.28 | |||||||
1H | C2 | 14.4 | 0.961 | 1.00 | −2.687 | 0.955 | 1.00 | ||||||
C6 | 14.4 | 0.967 | 1.00 | −2.783 | 0.954 | 1.04 | |||||||
C8 | 17.0 | 0.975 | 1.18 | −4.336 | 0.978 | 1.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jezuita, A.; Wieczorkiewicz, P.A.; Szatylowicz, H.; Krygowski, T.M. Solvent Effect on the Stability and Reverse Substituent Effect in Nitropurine Tautomers. Symmetry 2021, 13, 1223. https://doi.org/10.3390/sym13071223
Jezuita A, Wieczorkiewicz PA, Szatylowicz H, Krygowski TM. Solvent Effect on the Stability and Reverse Substituent Effect in Nitropurine Tautomers. Symmetry. 2021; 13(7):1223. https://doi.org/10.3390/sym13071223
Chicago/Turabian StyleJezuita, Anna, Paweł A. Wieczorkiewicz, Halina Szatylowicz, and Tadeusz M. Krygowski. 2021. "Solvent Effect on the Stability and Reverse Substituent Effect in Nitropurine Tautomers" Symmetry 13, no. 7: 1223. https://doi.org/10.3390/sym13071223