A Postoperative Displacement Measurement Method for Femoral Neck Fracture Internal Fixation Implants Based on Femoral Segmentation and Multi-Resolution Frame Registration
<p>Cropping of CT images: (<b>a</b>) raw CT data in Pelvic Reference Data, including symmetrical femur, pelvis, spine, etcetera; (<b>b</b>) cropped CT images.</p> "> Figure 2
<p>Coronal images viewed from the anterior side: (<b>a</b>) left femur; (<b>b</b>) images shared by both datasets; (<b>c</b>) right femur.</p> "> Figure 3
<p>The position of Hansson pins in the anatomy of the femur.</p> "> Figure 4
<p>The partial CT image versus the complete CT images: (<b>a</b>) partial CT images containing a single femur; (<b>b</b>) CT images containing the complete femur structure.</p> "> Figure 5
<p>Pyramid multi-resolution framework.</p> "> Figure 6
<p>The framework of a symmetrical structure of a five-layer network with 1 channel for both input and output and a volume of 80 × 80 × 80.</p> "> Figure 7
<p>In post-processing, remove noise from the image: (<b>a</b>) input images; (<b>b</b>) output image with noise; (<b>c</b>) output image with maximum coherence preserved.</p> "> Figure 8
<p>The pin’s axis and the outer bounding box of the pin intersect are the two endpoints of the implant.</p> "> Figure 9
<p>Pre-processed images and femur labels: (<b>a</b>) preserved images of 20-220 Hounsfield unit values; (<b>b</b>) ground truth of femur.</p> "> Figure 10
<p>CT images after registration: (<b>a</b>) fixed images; (<b>b</b>) fine-aligned floating images; (<b>c</b>) the two images in the coordinate system with the overlapping femur as the reference.</p> "> Figure 11
<p>3D point clouds of proximal pins and distal pins in the same spatial coordinate system for both previous and posterior CT images. The purple point cloud is part of the proximal femur and pelvis. The green and blue point clouds represent the proximal and distal pins obtained from the first postoperative CT scan. Gold and red point clouds represent the proximal and distal pins from the second CT image after the previous CT scan, respectively.</p> "> Figure 12
<p>Calculate the displacement of the proximal pin and the distal pin in the specified direction in the newly established spatial coordinate system: (<b>a</b>) establish the coordinate system based on the proximal pin; (<b>b</b>) establish the coordinate system based on the distal pin.</p> "> Figure 13
<p>Locating reference point A in the CT image: (<b>a</b>) reference point located in the axial plane; (<b>b</b>) reference point located in the sagittal plane; (<b>c</b>) reference point located in coronal plane; (<b>d</b>) display reference point in the 3D model.</p> "> Figure 13 Cont.
<p>Locating reference point A in the CT image: (<b>a</b>) reference point located in the axial plane; (<b>b</b>) reference point located in the sagittal plane; (<b>c</b>) reference point located in coronal plane; (<b>d</b>) display reference point in the 3D model.</p> "> Figure 14
<p>Create coordinate system for measurement.</p> "> Figure 15
<p>The average loss calculated in training: (<b>a</b>) left femoral segmentation model; (<b>b</b>) right femoral segmentation model.</p> "> Figure 16
<p>Mean dice of the model: (<b>a</b>) left femoral segmentation model; (<b>b</b>) right femoral segmentation model.</p> "> Figure 17
<p>Comparison of femoral segmentation results: (<b>a</b>) manual segmentation; (<b>b</b>) segmentation using model.</p> "> Figure 18
<p>Spatial location of femur after coarse alignment.</p> "> Figure 19
<p>Comparison of the results using different labeling as a fine-aligned mask.</p> "> Figure 20
<p>Hansson pins point clouds: from (<b>a</b>–<b>e</b>) is the Hansson pins point clouds used for the left femur; from (<b>f</b>–<b>j</b>) is the Hansson pins point clouds used for the right femur.</p> "> Figure 21
<p>Length error of proximal Hansson pins calculated based on femoral registration method and traditional method.</p> "> Figure 22
<p>Length error of distal Hansson pins calculated based on femoral registration method and traditional method.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Creation of Data Sets
2.1.1. Dataset A and B
2.1.2. Dataset C
2.2. Registration of the Femur
2.3. D-UNet Framework
2.4. Principal Component Analysis (PCA)
- Input:
- •
- M-dimensional sample set ;
- •
- The number of dimensions n to be dimensioned down to.
- Output: reduced-dimensional sample set .
- Steps:
- Standardize all variables.
- Calculation of covariance matrix.
- Computes the eigenvectors and eigenvalues of the covariance matrix.
- Select the largest n vectors normalized to form a new matrix .
- Transform the original matrix.
- Output sample set .
3. Experiment
3.1. Input of Images and Training of Segmentation Models
3.2. Registration of References
3.3. Calculation of Implant Displacement
3.4. Measurement of Implant Displacement Based on Conventional Methods
4. Results
Training Loss, Mean Dice, and Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haider, T.; Schnabel, J.; Hochpöchler, J.; Wozasek, G.E. Femoral shortening does not impair functional outcome after internal fixation of femoral neck fractures in non-geriatric patients. Arch. Orthop. Trauma Surg. 2018, 138, 1511–1517. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Yu, S.-W.; Tseng, I.-C.; Su, J.-Y.; Tu, Y.-K.; Chen, W.-J. Treatment of Undisplaced Femoral Neck Fractures in the Elderly. J. Trauma Inj. Infect. Crit. Care 2005, 58, 1035–1039. [Google Scholar] [CrossRef]
- Brauer, C.A.; Coca-Perraillon, M.; Cutler, D.M.; Rosen, A.B. Incidence and mortality of hip fractures in the United States. JAMA 2009, 302, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, R.G.; Kaplan, K.M.; Levine, B.R.; Egol, K.A.; Zuckerman, J.D. Surgical Management of Hip Fractures: An Evidence-based Review of the Literature. I: Femoral Neck Fractures. J. Am. Acad. Orthop. Surg. 2008, 16, 596–607. [Google Scholar] [CrossRef]
- Sekeitto, A.R.; Sikhauli, N.; van der Jagt, D.R.; Mokete, L.; Pietrzak, J.R. The management of displaced femoral neck fractures: A narrative review. EFORT Open Rev. 2021, 6, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, E.J.I.; Stibolt, R.D., Jr.; Smith, W.; Wills, B.; Pinto, M.C.; McGwin, G., Jr.; Shah, A.; Godoy-Santos, A.L.; Naranje, S. Trends in surgical treatment of femoral neck fractures in the elderly. Einstein (São Paulo) 2018, 16, eAO4351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiskjaer, S.; Ostgård, S.E. Risk factors influencing mortality after bipolar hemiarthroplasty in the treatment of fracture of the femoral neck. Clin. Orthop. Relat. Res. 1991, 270, 295–300. [Google Scholar] [CrossRef]
- Lu, Q.; Tang, G.; Zhao, X.; Guo, S.; Cai, B.; Li, Q. Hemiarthroplasty versus internal fixation in super-aged patients with undisplaced femoral neck fractures: A 5-year follow-up of randomized controlled trial. Arch. Orthop. Trauma Surg. 2016, 137, 27–35. [Google Scholar] [CrossRef]
- Oñativia, I.J.; Slulittel, P.A.; Dilernia, F.D.; Viezcas, J.M.G.; Vietto, V.; Ramkumar, P.N.; Buttaro, M.A.; Piuzzi, N.S. Outcomes of nondisplaced intracapsular femoral neck fractures with internal screw fixation in elderly patients: A systematic review. HIP Int. 2018, 28, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanty, L.; Canovas, F.; Rodriguez, T.; Faure, P.; Dagneaux, L. Femoral neck shortening after internal fixation of Garden I fractures increases the risk of femoral head collapse. Orthop. Traumatol. Surg. Res. 2019, 105, 999–1004. [Google Scholar] [CrossRef]
- Johnson, J.P.; Kleiner, J.; Goodman, A.D.; Gil, J.A.; Daniels, A.H.; Hayda, R.A. Treatment of femoral neck fractures in patients 45–64 years of age. Injure 2019, 50, 708–712. [Google Scholar] [CrossRef]
- Bigoni, M.; Turati, M.; Leone, G.; Caminita, A.D.; D’Angelo, F.; Munegato, D.; Zatti, G. Internal fixation of intra-capsular femoral neck fractures in elderly patients: Mortality and reoperation rate. Aging Clin. Exp. Res. 2020, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mansur, H.; Alvarez, R.; Freitas, A.; Gonçalves, C.B.; Ramos, M.R.F. Biomechanical analysis of femoral neck fracture fixation in synthetic bone. Acta Ortop. Bras. 2018, 26, 162–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schopper, C.; Zderic, I.; Menze, J.; Müller, D.; Rocci, M.; Knobe, M.; Shoda, E.; Richards, G.; Gueorguiev, B.; Stoffel, K. Higher stability and more predictive fixation with the Femoral Neck System versus Hansson Pins in femoral neck fractures Pauwels II. J. Orthop. Transl. 2020, 24, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, M.; Li, L.; Zhang, H.; Hao, M.; Li, C.; Han, L.; Zhou, J.; Wang, K. Finite element analysis of different configurations of fully threaded cannulated screw in the treatment of unstable femoral neck fractures. J. Orthop. Surg. Res. 2018, 13, 272. [Google Scholar] [CrossRef] [Green Version]
- Augat, P.; Bliven, E.; Hackl, S. Biomechanics of Femoral Neck Fractures and Implications for Fixation. J. Orthop. Trauma 2019, 33, S27–S32. [Google Scholar] [CrossRef] [PubMed]
- Bauman, Z.M.; Grams, B.; Yanala, U.; Shostrom, V.; Waibel, B.; Evans, C.H.; Cemaj, S.; Schlitzkus, L.L. Rib fracture displacement worsens over time. Eur. J. Trauma Emerg. Surg. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bugaev, N.; Breeze, J.L.; Alhazmi, M.; Anbari, H.S.; Arabian, S.S.; Holewinski, S.; Rabinovici, R. Magnitude of rib fracture displacement predicts opioid requirements. J. Trauma Acute Care Surg. 2016, 81, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, D.M.; Gregg, P.J.; Atkins, R.M. Intra-articular fractures of the calcaneum. Part I: Pathological anatomy and classification. J. Bone Joint Surg. Br. 1993, 75, 183–188. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J.N.; Wu, Z.; Ding, X. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Med. Image Anal. 2020, 63, 101693. [Google Scholar] [CrossRef] [Green Version]
- Yorke, A.A.; McDonald, G.C.; Solis, D., Jr.; Guerrero, T. Pelvic Reference Data. Cancer Imaging Arch. 2019. [Google Scholar] [CrossRef]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Hansson, L.I. Osteosynthesis with the Hook-Pin in Slipped Capital Femoral Epiphysis. Acta Orthop. Scand. 1982, 53, 87–96. [Google Scholar] [CrossRef]
- Lv, X. Medical Image Alignment Techniques and Applications, 1st ed.; Science Press: Beijing, China, 2015; pp. 120–129. [Google Scholar]
- Johnson, H.J.; McCormick, M.M.; Ibanez, L. The ITK Software Guide Book 1: Introduction and Development Guidelines; Kitware, Inc.: Clifton Park, NY, USA, 2015; Volume 1, pp. 377–386. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Moeskops, P.; Wolterink, J.M.; Van Der Velden, B.H.M.; Gilhuijs, K.G.A.; Leiner, T.; Viergever, M.A.; Išgum, I. Deep Learning for Multi-task Medical Image Segmentation in Multiple Modalities. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Cham, Switzerland, 2016; pp. 478–486. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- The MONAI Consortium. Project MONAI. Zenodo. Available online: https://monai.io/ (accessed on 15 December 2020). [CrossRef]
- Zhang, Q.; Song, L.; Ning, S.; Xie, H.; Li, N.; Wang, Y. Recent advances in rib fracture fixation. J. Thorac. Dis. 2019, 11, S1070–S1077. [Google Scholar] [CrossRef]
- Rancy, S.K.; Malliaris, S.D.; Bogner, E.A.; Wolfe, S.W. Intramedullary Fixation of Distal Radius Fractures Using CAGE-DR Implant. J. Wrist Surg. 2018, 7, 358–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, N.; Seghi, R.; Johnston, W.M.; Yilmaz, B. Displacement and performance of abutments in narrow-diameter implants with different internal connections. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Della Rotonda, G.; Guastafierro, A.; Viglione, S.; Russo, F.; Coscione, A.V.; Ciccarelli, M.; Russo, R. Analysis of early and late clinical and radiologic complications of proximal humeral fractures using open reduction, internal fixation, and intramedullary titanium cage augmentation. J. Shoulder Elb. Surg. 2020, 29, 1843–1851. [Google Scholar] [CrossRef]
- Bergmann, G.; Bender, A.; Dymke, J.; Duda, G.; Damm, P. Standardized Loads Acting in Hip Implants. PLoS ONE 2016, 11, e0155612. [Google Scholar] [CrossRef]
- Liu, K.; Nagamune, K.; Oe, K.; Kuroda, R.; Niikura, T. Migration Measurement of Pins in Postoperative Recovery of the Proximal Femur Fractures Based on 3D Point Cloud Matching. Medicina 2021, 57, 406. [Google Scholar] [CrossRef]
Case No. | Length of Pins (mm) | Sex | Age | Location of Fracture | |
Proximal | Distal | ||||
1 | 80 | 90 | Female | 78 | Left femur |
2 | 80 | 90 | Female | 79 | Left femur |
3 | 70 | 85 | Female | 90 | Left femur |
4 | 80 | 90 | Female | 65 | Left femur |
5 | 85 | 95 | Female | 76 | Left femur |
6 | 90 | 100 | Female | 64 | Right femur |
7 | 80 | 95 | Female | 81 | Right femur |
8 | 80 | 90 | Female | 80 | Right femur |
9 | 80 | 90 | Female | 67 | Right femur |
10 | 75 | 90 | Female | 85 | Right femur |
Left Femur | Case No. | 1 | 2 | 3 | 4 | 5 |
Metric Value | −0.271 | −0.039 | −0.285 | −0.322 | −0.467 | |
Right Femur | Case No. | 6 | 7 | 8 | 9 | 10 |
Metric Value | −0.367 | −0.259 | −0.178 | −0.097 | −0.331 |
Left Femur | Case No. | 1 | 2 | 3 | 4 | 5 | |
Metric Value | Segmentation Model | −0.306 | −0.065 | −0.364 | −0.346 | −0.308 | |
Manual Labeling | −0.289 | −0.046 | −0.357 | −0.370 | −0.312 | ||
Right Femur | Case No. | 6 | 7 | 8 | 9 | 10 | |
Metric Value | Segmentation Model | −0.337 | −0.180 | −0.256 | −0.270 | −0.339 | |
Manual Labeling | −0.360 | −0.240 | −0.231 | −0.259 | −0.342 |
Fracture Site | Case No. | Proximal Pin (mm) | Distal Pin (mm) | ||||
Actual Length | Fixed Images | Floating Images | Actual Length | Fixed Images | Floating Images | ||
Left Femur | 1 | 80 | 80.38 | 82.19 | 90 | 90.38 | 90.39 |
2 | 80 | 80.28 | 80.46 | 90 | 90.31 | 90.14 | |
3 | 70 | 70.07 | 69.49 | 85 | 86.96 | 85.75 | |
4 | 80 | 81.07 | 81.32 | 90 | 90.98 | 90.10 | |
5 | 85 | 86.77 | 84.93 | 95 | 96.36 | 96.46 | |
Right Femur | 6 | 90 | 90.24 | 91.98 | 100 | 101.29 | 101.32 |
7 | 80 | 79.84 | 79.89 | 95 | 95.29 | 95.00 | |
8 | 80 | 80.43 | 79.31 | 90 | 90.51 | 89.86 | |
9 | 80 | 80.61 | 79.38 | 90 | 90.82 | 89.27 | |
10 | 75 | 75.46 | 75.44 | 90 | 90.80 | 90.94 |
Fracture Site | Case No. | Proximal Pin (mm) | Distal Pin (mm) | ||||
Actual Length | Top Movement | Bottom Movement | Actual Length | Top Movement | Bottom Movement | ||
Left Femur | 1 | 80 | 19.49 | 17.44 | 90 | 16.51 | 16.11 |
2 | 80 | 3.18 | 3.36 | 90 | 4.04 | 3.83 | |
3 | 70 | 0.49 | 0.26 | 85 | 0.55 | 0.88 | |
4 | 80 | 4.55 | 4.06 | 90 | 4.93 | 2.47 | |
5 | 85 | 7.62 | 4.78 | 95 | 7.47 | 7.58 | |
Right Femur | 6 | 90 | 8.41 | 8.99 | 100 | 8.87 | 10.59 |
7 | 80 | 0.68 | 0.90 | 95 | 1.06 | 0.78 | |
8 | 80 | 1.98 | 0.93 | 90 | 1.25 | 0.82 | |
9 | 80 | 1.46 | 0.46 | 90 | 2.11 | 0.78 | |
10 | 75 | 0.36 | 0.39 | 90 | 1.96 | 2.09 |
Fracture Site | Case No. | Proximal Pin Displacement (mm) | Distal Pin Displacement (mm) | ||||||||||
Top Endpoint | Bottom Endpoint | Top Endpoint | Bottom Endpoint | ||||||||||
x axis | y axis | z axis | x axis | y axis | z axis | x axis | y axis | z axis | x axis | y axis | z axis | ||
Left Femur | 1 | 7.76 | −7.11 | −16.39 | −5.54 | 3.10 | −16.34 | −1.59 | −3.19 | −16.22 | −0.06 | 2.78 | −15.98 |
2 | 0.23 | −0.16 | −3.18 | −0.26 | 0.01 | −3.36 | 0.00 | −0.79 | −3.97 | −0.44 | 0.40 | −3.79 | |
3 | −0.06 | −0.06 | −0.47 | 0.14 | 0.06 | 0.11 | −0.22 | −0.28 | −0.39 | 0.14 | −0.29 | 0.82 | |
4 | 2.78 | 0.88 | −3.50 | −1.79 | −0.73 | −3.60 | −0.66 | −3.32 | −3.42 | 0.37 | 0.27 | −2.45 | |
5 | 0.83 | 0.43 | −7.71 | −0.22 | −0.43 | −4.85 | 0.33 | −1.38 | −7.46 | −0.30 | 1.73 | −7.49 | |
Right Femur | 6 | −1.81 | −3.41 | −7.28 | 1.19 | 2.02 | −8.73 | 1.07 | −1.78 | −8.74 | −0.06 | 0.94 | −10.72 |
7 | 0.45 | 0.08 | −0.49 | −0.57 | −0.40 | −0.53 | −0.23 | 0.05 | −1.03 | 0.19 | −0.16 | −0.73 | |
8 | 0.37 | 0.58 | −1.84 | −0.23 | −0.50 | −0.72 | −0.15 | 0.10 | −1.24 | 0.54 | 0.05 | −0.58 | |
9 | −0.29 | −0.30 | −1.38 | 0.30 | −0.26 | −0.14 | −0.51 | −0.32 | −2.01 | 0.09 | 0.60 | −0.44 | |
10 | −0.05 | 0.31 | −0.17 | −0.30 | −0.19 | −0.15 | −0.18 | −0.34 | −1.94 | 0.10 | 0.38 | −2.07 |
Fracture Site | Case No. | Proximal Pin (mm) | Distal Pin (mm) | ||||
Actual Length | Top Movement | Bottom Movement | Actual Length | Top Movement | Bottom Movement | ||
Left Femur | 1 | 80 | −0.77 | 0.54 | 90 | −0.84 | −0.18 |
2 | 80 | −0.08 | −0.36 | 90 | −0.81 | −0.31 | |
3 | 70 | −3.57 | −1.89 | 85 | −0.16 | −0.34 | |
4 | 80 | −1.87 | −0.62 | 90 | −1.67 | −0.88 | |
5 | 85 | 0.55 | 0.57 | 95 | 1.04 | 2.26 | |
Right Femur | 6 | 90 | −1.84 | −1.68 | 100 | −2.47 | 1.77 |
7 | 80 | 1.37 | 1.91 | 95 | 1.61 | 1.53 | |
8 | 80 | 2.07 | 2.09 | 90 | 0.69 | 2.86 | |
9 | 80 | 1.98 | 1.25 | 90 | 2.68 | 2.64 | |
10 | 75 | 0.11 | 2.46 | 90 | 0.21 | 2.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Nagamune, K.; Oe, K.; Kuroda, R.; Niikura, T. A Postoperative Displacement Measurement Method for Femoral Neck Fracture Internal Fixation Implants Based on Femoral Segmentation and Multi-Resolution Frame Registration. Symmetry 2021, 13, 747. https://doi.org/10.3390/sym13050747
Liu K, Nagamune K, Oe K, Kuroda R, Niikura T. A Postoperative Displacement Measurement Method for Femoral Neck Fracture Internal Fixation Implants Based on Femoral Segmentation and Multi-Resolution Frame Registration. Symmetry. 2021; 13(5):747. https://doi.org/10.3390/sym13050747
Chicago/Turabian StyleLiu, Kaifeng, Kouki Nagamune, Keisuke Oe, Ryosuke Kuroda, and Takahiro Niikura. 2021. "A Postoperative Displacement Measurement Method for Femoral Neck Fracture Internal Fixation Implants Based on Femoral Segmentation and Multi-Resolution Frame Registration" Symmetry 13, no. 5: 747. https://doi.org/10.3390/sym13050747
APA StyleLiu, K., Nagamune, K., Oe, K., Kuroda, R., & Niikura, T. (2021). A Postoperative Displacement Measurement Method for Femoral Neck Fracture Internal Fixation Implants Based on Femoral Segmentation and Multi-Resolution Frame Registration. Symmetry, 13(5), 747. https://doi.org/10.3390/sym13050747