Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian
<p>Two plots of the implicit Equation (<a href="#FD13-symmetry-13-00350" class="html-disp-formula">13</a>) with the parametrization (<a href="#FD22-symmetry-13-00350" class="html-disp-formula">22</a>) allow us to see the variation of the parameter <span class="html-italic">s</span> (remember that <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>/</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>) as a function of <math display="inline"><semantics> <mi>ψ</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">sin</mo> <msub> <mi>θ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>: on the left for <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>, on the right for <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>4</mn> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Energy levels (<math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>/</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>a</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>) for odd parity (blue) and even parity (yellow) solution for <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, coming from (<a href="#FD23-symmetry-13-00350" class="html-disp-formula">23</a>).</p> "> Figure 3
<p>First order supersymmetric (SUSY) states <math display="inline"><semantics> <mrow> <msubsup> <mi>ϕ</mi> <mi>n</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> from (<a href="#FD41-symmetry-13-00350" class="html-disp-formula">41</a>) when the ground state of the original system is either purely even, that is <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (plot on the left), or purely odd, that is <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (plot on the right). Note that the quantum number <span class="html-italic">n</span> of the Legendre function in (<a href="#FD41-symmetry-13-00350" class="html-disp-formula">41</a>) is the number of the nodes of the function.</p> "> Figure 4
<p>Different energy levels of first and second supersymmetry Hamiltonians.</p> "> Figure 5
<p>Energy scheme of different SUSY transformations up to order <span class="html-italic">ℓ</span>.</p> ">
Abstract
:1. Introduction
2. Self-Adjoint Extensions: Determination of Their Eigenvalues
- (i)
- Those which preserve time reversal;
- (ii)
- Those which preserve parity;
- (iii)
- Those preserving positivity.
- The eigenvector of with 0 eigenvalue is given by
- The extensions preserving time reversal invariance, are given by
- The parity preserving extensions of are those for which the eigenfunctions verify:
Parity Preserving Extensions of
3. Spectrum of the Free Particle on a Finite Interval
3.1. The Angular Representation of the Self-Adjoint Extensions of
3.2. Some Simple Cases
3.2.1. Parity and Time Reversal Invariance:
3.2.2. Parity Preserving Extensions Fulfilling
3.2.3. Parity and Time Reversal Invariance Extensions Fulfilling (20c)
3.3. About the Negative and Zero Energies
4. Supersymmetric Partners for the Simplest Extensions
4.1. First Order SUSY Partners
4.2. Second Order SUSY Partners
5. Supersymmetric Self-Adjoint Extensions of the Infinite Well at ℓ-Order
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1.
Appendix A.2. Trigonometric Expansion of P ℓ n -itans 0 y 2a
Appendix A.3. Trigonometric Expansion of Q ℓ n (-itans 0 y 2a)
References
- Fernández, D.J. Supersymmetric quantum mechanics. AIP Conf. Proc. 2010, 1287, 3–36. [Google Scholar]
- Infeld, L.; Hull, T.E. The factorization method. Rev. Mod. Phys. 1951, 23, 21–68. [Google Scholar] [CrossRef]
- Lahiri, A.; Roy, P.K.; Bagchi, B. Supersymmetry in quantum mechanics. Int. J. Mod. Phys. A 1990, 5, 1383–1456. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Roy, P.; Roychoudhury, R. On the solution of quantum eigenvalue problems. A supersymmetric point of view. Fortschr. Phys. 1991, 39, 211–258. [Google Scholar] [CrossRef]
- Bagchi, B. Superymmetry in Quantum and Classical Mechanics; Chapman and Hall: Boca Raton, FL, USA, 2001. [Google Scholar]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and Quantum Mechanics. Phys. Rep. 1995, 251, 267–385. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.I.; Negro, J.; Nieto, L.M.; Rosas-Ortiz, O. The supersymmetric modified Pöschl-Teller and delta-well potential. J. Phys. A Math. Gen. 1999, 32, 8447–8460. [Google Scholar] [CrossRef]
- Mielnik, B.; Nieto, L.M.; Rosas-Ortiz, O. The finite difference algorithm for higher order supersymmetry. Phys. Lett. A 2000, 269, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Fernández, C.D.J.; Negro, J.; Nieto, L.M. Regularized Scarf potentials: Energy band structure and supersymmetry. J. Phys. A Math. Gen. 2004, 37, 6987–7001. [Google Scholar]
- Ioffe, M.V.; Negro, J.; Nieto, L.M.; Nishiniandze, D. New two-dimensional integrable quantum models from SUSY intertwining. J. Phys. A Math. Gen. 2006, 39, 9297–9308. [Google Scholar] [CrossRef]
- Correa, F.; Nieto, L.M.; Plyushchay, M.S. Hidden nonlinear supersymmetry of finite-gap Lamé equation. Phys. Lett. B 2007, 644, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, A.; Nieto, L.M. Shape-invariant quantum Hamiltonian with position-dependent effective mass through second-order supersymmetry. J. Phys. A Math. Gen. 2007, 49, 7265–7281. [Google Scholar] [CrossRef] [Green Version]
- Correa, V.; Jakubsk, V.; Nieto, L.M.; Plyushchay, M.S. Self-isospectrality, special supersymmetry, and their effect on the band structure. Phys. Rev. Lett. 2008, 101, 030403. [Google Scholar] [CrossRef] [Green Version]
- Fernández, C.D.J.; Gadella, M.; Nieto, L.M. Supersymmetry Transformations for Delta Potentials. SIGMA 2011, 7, 029. [Google Scholar] [CrossRef]
- Bonneau, G.; Faraut, J.; Valent, G. Self adjoint extensions of operators and the teaching of Quantum Mechanics. Am. J. Phys. 2001, 69, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Albeverio, S.; Fassari, S.; Rinaldi, F. The Hamiltonian of the harmonic oscillator with an attractive δ′-interaction centred at the origin as approximated by the one with a triple of attractive delta-interactions. J. Phys. A Math. Theor. 2016, 49, 025302. [Google Scholar] [CrossRef]
- Zolotaryuk, A.V.; Tsironis, G.P.; Zolotaryuk, Y. Point Interactions With Bias Potentials. Front. Phys. 2019, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Zolotaryuk, A.V. A phenomenon of splitting resonant-tunneling one-point interactions. Ann. Phys. 2018, 396, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Zolotaryuk, A.V.; Zolotaryuk, Y. A zero-thickness limit of multilayer structures: A resonant-tunnelling δ′-potential. J. Phys. A Math. Theor. 2015, 48, 035302. [Google Scholar] [CrossRef]
- Golovaty, Y.D.; Hryniv, R.O. On norm resolvent convergence of Schrödinger operators with δ′-like potentials. J. Phys. A Math. Theor. 2010, 43, 155204. [Google Scholar] [CrossRef]
- Erman, F.; Uncu, H. Green’s function formulation of multiple nonlinear Dirac delta-function potential in one dimension. Phys. Lett. A 2020, 384, 126227. [Google Scholar] [CrossRef] [Green Version]
- Donaire, M.; Muñoz-Castañeda, J.M.; Nieto, L.M.; Tello-Fraile, M. Field Fluctuations and Casimir Energy of 1D-Fermions. Symmetry 2019, 11, 643. [Google Scholar] [CrossRef] [Green Version]
- Gadella, M.; Mateos-Guilarte, J.M.; Muñoz-Castañeda, J.M.; Nieto, L.M. Two-point one-dimensional δ(x)-δ′(x) interactions: Non-abelian addition law and decoupling limit. J. Phys. A Math. Theor. 2016, 49, 015204. [Google Scholar] [CrossRef] [Green Version]
- Gadella, M.; Mateos-Guilarte, J.M.; Muñoz-Castañeda, J.M.; Nieto, L.M.; Santamaría-Sanz, L. Band spectra of periodic hybrid δ-δ′ structures. Eur. Phys. J. Plus 2020, 135, 786. [Google Scholar] [CrossRef]
- Reed, M.; Simon, B. Fourier Analysis. Self Adjointness; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Fassari, S.; Gadella, M.; Glasser, M.L.; Nieto, L.M. Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity. Ann. Phys. 2018, 389, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Kurasov, P. Distribution theory for discontinuous test functions and differential operators with generalized coefficients. J. Math. Ann. Appl. 1996, 201, 297–323. [Google Scholar] [CrossRef] [Green Version]
- Charro, M.E.; Glasser, M.L.; Nieto, L.M. Dirac Green function for δ potentials. EPL 2017, 120, 30006. [Google Scholar] [CrossRef] [Green Version]
- Fassari, S.; Gadella, M.; Nieto, L.M.; Rinaldi, F. On the spectrum of the one-dimensional Schrödinger Hamiltonian perturbed by an attractive Gaussian potential. Acta Politech. 2017, 57, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Castañeda, J.M.; Nieto, L.M.; Romaniega, C. Hyperspherical δ-δ′ potentials. Ann. Phys. 2019, 400, 246–261. [Google Scholar] [CrossRef] [Green Version]
- Albeverio, S.; Fassari, S.; Gadella, M.; Nieto, L.M.; Rinaldi, F. The Birman-Schwinger Operator for a Parabolic Quantum Well in a Zero-Thickness Layer in the Presence of a Two-Dimensional Attractive Gaussian Impurity. Front. Phys. 2019, 7, 102. [Google Scholar] [CrossRef] [Green Version]
- Gadella, M.; García-Ferrero, M.A.; González-Martín, S.; Maldonado-Villamizar, F.H. The infinite square well with a point interaction: A discussion on the different parameterizations. Int. J. Theor. Phys. 2013, 53, 1614–1627. [Google Scholar] [CrossRef] [Green Version]
- Gadella, M.; Glasser, M.L.; Nieto, L.M. The infinite square well with a singular perturbation. Int. J. Theor. Phys. 2011, 50, 2191–2200. [Google Scholar] [CrossRef]
- Naimark, M.A. Linear Differential Operators; Dover: New York, NY, USA, 2014. [Google Scholar]
- Gadella, M.; Glasser, M.L.; Nieto, L.M. One Dimensional Models with a Singular Potential of the Type -αδ(x)+βδ′(x). Int. J. Theor. Phys. 2011, 50, 2144–2152. [Google Scholar] [CrossRef]
- Reed, M.; Simon, B. Functional Analysis; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Bachman, G.; Narici, L. Functional Analysis; Dover: New York, NY, USA, 2012. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. Available online: https://dlmf.nist.gov/14.3 (accessed on 6 December 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadella, M.; Hernández-Muñoz, J.; Nieto, L.M.; San Millán, C. Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian. Symmetry 2021, 13, 350. https://doi.org/10.3390/sym13020350
Gadella M, Hernández-Muñoz J, Nieto LM, San Millán C. Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian. Symmetry. 2021; 13(2):350. https://doi.org/10.3390/sym13020350
Chicago/Turabian StyleGadella, Manuel, José Hernández-Muñoz, Luis Miguel Nieto, and Carlos San Millán. 2021. "Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian" Symmetry 13, no. 2: 350. https://doi.org/10.3390/sym13020350
APA StyleGadella, M., Hernández-Muñoz, J., Nieto, L. M., & San Millán, C. (2021). Supersymmetric Partners of the One-Dimensional Infinite Square Well Hamiltonian. Symmetry, 13(2), 350. https://doi.org/10.3390/sym13020350