Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial
Abstract
:1. Introduction
- By taking we obtain the classes and of the well-known Janowski starlike and convex functions.
- If we set we obtain the classes and of starlike and convex functions of order .
- The class was considered by Sokol and Stankieicz [13], consisting of functions f such that lies in the region bounded by the right half of the Bernoulli lemniscate given by .
- Taking yields the classes of strongly starlike and convex functions.
- The function class was considered by Raina and Sokol [14], consisting of normalized starlike functions f satisfying the inequality
- Kanas et al. [15] considered the family of analytic functions and with the property that and lie in adomain bounded by the righ branch of a hyperbola
- The function class was introduced and studied by Mendiratta et al. [16]. The exponential function has positive real part in maps U onto a domain is symmetric with respect to the real axis and starlike with respect to 1 and
- The classes and were introduced and studied by Goel and Kumar [17]. The modified sigmoid function maps U onto a domain which is symmetric about the real axis. Moreover, G is a convex and hence starlike function with respect to
- The class and the class
- The class = and the class
- The class was introduced and studied by Aouf et al. [20].
- The class and
- = and
- The class .
- The class .
2. Coefficient Estimates for the Class
3. Coefficient Estimates for the Class
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 389–408. [Google Scholar] [CrossRef] [Green Version]
- Curtiss, J.H. Faber Polynomials and the Faber Series. Am. Math. Mon. Math. Assoc. Am. 1971, 78, 577–596. [Google Scholar] [CrossRef]
- Faber, G. Über Tschebyscheffsche Polynome. J. Reine Angew. Math. 1919, 150, 79–106. (In German) [Google Scholar]
- Grunsky, H. Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Z. 1939, 45, 29–61. [Google Scholar] [CrossRef]
- Schur, I. On Faber polynomials. Am. J. Math. 1945, 67, 33–41. [Google Scholar] [CrossRef]
- Suetin, P.K. Series of Faber Polynomials; Analytical Methods and Special Functions, 1; Gordon and Breach Science Publishers: New York, NY, USA, 1998; ISBN 978-90-5699-058-9. [Google Scholar]
- Suetin, P.K. Faber Polynomials; Encyclopedia of Mathematics; EMS Press: Berlin, Germany, 2001. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehren Math. Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Airault, H.; Bouali, A. Di erential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef] [Green Version]
- Bouali, A. Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. Bull. Sci. Math. 2006, 130, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Airault, H.; Ren, J. An algebra of di erential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on ComplexAnalysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Sokol, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Raina, R.K.; Sokol, J. Some properties related to a certain class of starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Kanas, S.; Masih, V.S.; Ebadian, A. Relations of a planar domain bounded by hyperbola with family of holomorphic functions. J. Inequalities Appl. 2019, 246, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Goel, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci. 2004, 55, 2959–2961. [Google Scholar] [CrossRef]
- Hussain, S.; Rasheed, A.; Zaighum, M.A.; Darus, M. A Subclass of Analytic Functions Related to k-Uniformly Convex and Starlike Functions. J. Funct. Spaces 2017, 2017, 9010964. [Google Scholar] [CrossRef] [Green Version]
- Aouf, M.K.; Hossen, H.M.; Lasahin, A.Y. On certain families of analytic functions with negative coefficients. Indian J. Pure Appl. Math. 2000, 31, 999–1015. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Altınkaya, S. Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers. Turk. J. Math. 2020, 44, 553–560. [Google Scholar]
- Altınkaya, S.; Yalcın, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus Math. 2015, 353, 1075–1080. [Google Scholar] [CrossRef]
- Aouf, M.K.; El-Ashwah, R.M.; Abd-Eltawab, A.M. New subclasses of bi-univalent functions involving Dziok–Srivastava operator. Int. Sch. Res. Not. 2013, 2013, 387178. [Google Scholar]
- Bulut, S. Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator. J. Funct. Spaces Appl. 2013, 2013, 181932. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product. J. Complex Anal. 2014, 2014, 302019. [Google Scholar] [CrossRef] [Green Version]
- Caglar, M.; Orhan, H.; Yagmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan-Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Jahangiri, J.M.; Hamidi, S.G. Faber polynomial coefficient estimates for analytic bi-bazilevic functions. Mat. Vesn. 2015, 67, 123–129. [Google Scholar]
- Lashin, A.Y. On certain subclasses of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2016, 24, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Lashin, A.Y. Coefficient estimates for two subclasses of analytic and bi-univalent functions. Ukr. Math. J. 2019, 70, 1484–1492. [Google Scholar] [CrossRef]
- Lashin, A.Y.; L-Emam, F.Z.E. Faber polynomial coefficients for certain subclasses of analytic and biunivalent functions. Turk. J. Math. 2020, 44, 1345–1361. [Google Scholar] [CrossRef]
- Magesh, N.; Rosy, T.; Varma, S. Coefficient estimate problem for a new subclass of bi-univalent functions. J. Complex Anal. 2013, 2013, 474231. [Google Scholar]
- Magesh, N.; Yamini, J. Coefficient bounds for certain subclasses of bi-univalent functions. Int. Math. Forum. 2013, 8, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.-G.; Han, Q.-Q. On the coefficients of several classes of bi-univalent functions. Acta Math. Sci. Ser. B Engl. Ed. 2014, 34, 228–240. [Google Scholar] [CrossRef]
- Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egypt. Math. Soc. 2013, 21, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Magesh, N. Certain subclasses of bi-univalent functions associated with the Hohlov operator. Glob. J. Math. Anal. 2013, 1, 67–73. [Google Scholar]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Vijaya, K. Coefficient estimates for some families of bi-Bazilevic functions of the Ma–Minda type involving the Hohlov operator. J. Class. Anal. 2013, 2, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber Polynomial Coefficient Estimates for bi-univalent functions defined by using differential subordina-tion and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Deng, G.-T.; Li, S.-H. Coefficient estimates for new subclasses of Ma–Minda bi-univalent functions. J. Inequalities Appl. 2013, 2013, 317. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Nieto, J.J. Some fractional integral formulas for the Mittag-Leffler type function with four parameters. Open Math. 2015, 1, 537–546. [Google Scholar] [CrossRef]
- Agarwal, P.; Chand, M.; Baleanu, D.; O’Regan, D.; Jain, S. On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018, 249, 13. [Google Scholar] [CrossRef]
- Alderremy, A.A.; Saad, K.M.; Agarwal, P.; Aly, S.; Jain, S. Certain new models of the multi space-fractional Gardner equation. Phys. A 2020, 545, 11. [Google Scholar] [CrossRef]
- Saoudi, K.; Agarwal, P.; Kumam, P.; Ghanmi, A.; Thounthong, P. The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2018, 263, 18. [Google Scholar] [CrossRef] [Green Version]
- Darwish, H.E.; Lashin, A.Y.; El-Ashwah, R.M.; Madar, E.M. Coefficient estimates of some classes of rational functions. Int. J. Open Probl. Complex Anal. 2019, 11, 16–30. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Goyal, S.P.; Kumar, R. Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions. Math. Slovaca 2015, 65, 533–544. [Google Scholar] [CrossRef]
- Zireh, A.; Adegani, E.A.; Bidkham, M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. Math. Slovaca 2018, 68, 369–378. [Google Scholar] [CrossRef]
- Deniz, E.; Jahangiri, J.M.; Hamidi, S.G.; Kina, S.K. Faber polynomial coefficients for generalized bi–subordinate functions of complex order. J. Math. Inequalities 2018, 12, 645–653. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attiya, A.A.; Lashin, A.M.; Ali, E.E.; Agarwal, P. Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial. Symmetry 2021, 13, 302. https://doi.org/10.3390/sym13020302
Attiya AA, Lashin AM, Ali EE, Agarwal P. Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial. Symmetry. 2021; 13(2):302. https://doi.org/10.3390/sym13020302
Chicago/Turabian StyleAttiya, Adel A., Abdel Moneim Lashin, Ekram E. Ali, and Praveen Agarwal. 2021. "Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial" Symmetry 13, no. 2: 302. https://doi.org/10.3390/sym13020302