Skew Generalized Normal Innovations for the AR(p) Process Endorsing Asymmetry
<p>Skewing mechanism <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>Φ</mo> <mo>(</mo> <msqrt> <mn>2</mn> </msqrt> <mi>λ</mi> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> for the skew generalized normal (<math display="inline"><semantics> <mi mathvariant="script">SGN</mi> </semantics></math>) distribution with <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, and various values of <math display="inline"><semantics> <mi>λ</mi> </semantics></math>.</p> "> Figure 2
<p>Probability density function (PDF) for the <math display="inline"><semantics> <mi mathvariant="script">SGN</mi> </semantics></math> distribution with <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math> and various values of <math display="inline"><semantics> <mi>β</mi> </semantics></math> for (from left to right, top to bottom): (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mo>±</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mo>±</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Measures for <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>∼</mo> <mi mathvariant="script">SGN</mi> <mo>(</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics></math> for various values of <math display="inline"><semantics> <mi>β</mi> </semantics></math> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math> (from top to bottom): (<b>a</b>) Skewness. (<b>b</b>) Kurtosis.</p> "> Figure 4
<p>Histogram of the residuals with the fitted ARSGN(3) model overlaid for sample size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5000</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Sampling distributions for the ARSGN(2) ML parameter estimates obtained from a Monte Carlo simulation study (from left to right, top to bottom): (<b>a</b>) Sampling distribution for <math display="inline"><semantics> <mi>α</mi> </semantics></math>. (<b>b</b>) Sampling distribution for <math display="inline"><semantics> <mi>β</mi> </semantics></math>. (<b>c</b>) Sampling distribution for <math display="inline"><semantics> <mi>λ</mi> </semantics></math>. (<b>d</b>) Sampling distribution for <math display="inline"><semantics> <msub> <mi>φ</mi> <mn>0</mn> </msub> </semantics></math>. (<b>e</b>) Sampling distribution for <math display="inline"><semantics> <msub> <mi>φ</mi> <mn>1</mn> </msub> </semantics></math>. (<b>f</b>) Sampling distribution for <math display="inline"><semantics> <msub> <mi>φ</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 6
<p>Histogram of simulated innovation process <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">ST</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>15</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> with fitted AR(2) models overlaid for sample size <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5000</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Standard errors of the parameter estimates obtained from AR(2) models fitted to an ARST(2) process simulated with <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">ST</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>15</mn> <mo>,</mo> <mi>ν</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for different degrees of freedom <math display="inline"><semantics> <mi>ν</mi> </semantics></math>. From left to right, top to bottom: (<b>a</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SGN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>d</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">ST</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>ν</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>AIC values obtained from AR(2) models fitted (assuming various distributions for <math display="inline"><semantics> <msub> <mi>a</mi> <mi>t</mi> </msub> </semantics></math>) to an ARST(2) process simulated with <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">ST</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>15</mn> <mo>,</mo> <mi>ν</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for different degrees of freedom <math display="inline"><semantics> <mi>ν</mi> </semantics></math>.</p> "> Figure 9
<p>Viscosity measured hourly during a chemical process [<a href="#B17-symmetry-12-01253" class="html-bibr">17</a>]. From left to right, top to bottom: (<b>a</b>) Time plot. (<b>b</b>) Histogram. (<b>c</b>) Autocorrelation function (ACF). (<b>d</b>) Partial autocorrelation function (PACF).</p> "> Figure 10
<p>Residuals and estimated models obtained from AR(1) models fitted to the viscosity time series [<a href="#B17-symmetry-12-01253" class="html-bibr">17</a>]. From left to right, top to bottom: (<b>a</b>) AR(1) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) AR(1) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) AR(1) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SGN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>d</b>) AR(1) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">ST</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>ν</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 11
<p>Cumulative distribution function (CDF) for the estimated AR(1) models under various distributions assumed for the innovation process <math display="inline"><semantics> <msub> <mi>a</mi> <mi>t</mi> </msub> </semantics></math>, with the empirical CDF for the residuals obtained from the estimated ARSGN(1) model for the viscosity time series [<a href="#B17-symmetry-12-01253" class="html-bibr">17</a>].</p> "> Figure 12
<p>Australian resident population on a quarterly basis from June 1971 to June 1993 (estimated in thousands). From left to right: (<b>a</b>) Time plot. (<b>b</b>) ACF.</p> "> Figure 13
<p>Differenced (i.e., stationary) Australian resident population on a quarterly basis from June 1971 to June 1993 (estimated in thousands). From left to right, top to bottom: (<b>a</b>) Time plot. (<b>b</b>) Histogram. (<b>c</b>) ACF. (<b>d</b>) PACF.</p> "> Figure 14
<p>Residuals and estimated models obtained from AR(3) models fitted to the differenced time series of the estimated Australian resident population on a quarterly basis (from June 1971 to June 1993). From left to right, top to bottom: (<b>a</b>) AR(3) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) AR(3) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) AR(3) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SGN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>d</b>) AR(3) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">ST</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>ν</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 15
<p>Number of insolvencies per month in South Africa from January 2000 to November 2019 [<a href="#B21-symmetry-12-01253" class="html-bibr">21</a>]. From left to right: (<b>a</b>) Time plot. (<b>b</b>) ACF.</p> "> Figure 16
<p>Differenced (i.e., stationary) number of insolvencies per month in South Africa from January 2000 to November 2019 [<a href="#B21-symmetry-12-01253" class="html-bibr">21</a>]. From left to right, top to bottom: (<b>a</b>) Time plot. (<b>b</b>) Histogram. (<b>c</b>) ACF. (<b>d</b>) PACF.</p> "> Figure 17
<p>Residuals and estimated models obtained from AR(2) models fitted to the differenced time series of number of insolvencies per month in South Africa (from January 2000 to November 2019) [<a href="#B21-symmetry-12-01253" class="html-bibr">21</a>]. From left to right, top to bottom: (<b>a</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">SGN</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>d</b>) AR(2) model fitted assuming <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>t</mi> </msub> <mo>∼</mo> <mi mathvariant="script">ST</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>ν</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Review on the Skew Generalized Normal Distribution
- Skewness is a monotonically increasing function for —that is, for , the distribution is negatively skewed, and vice versa.
- In contrast to the latter, skewness is a non-monotonic function for .
- Considering kurtosis, all real values of and decreasing values of result in larger kurtosis, yielding heavier tails than that of the normal distribution.
3. The ARSGN() Model and Its Estimation Procedure
Algorithm 1: |
|
4. Application
4.1. Numerical Studies
Algorithm 2: |
|
4.1.1. Simulation Study 1
4.1.2. Simulation Study 2
4.1.3. Simulation Study 3
4.1.4. Simulation Study 4
4.2. Real-World Time Series Analysis
4.2.1. Viscosity during a Chemical Process
4.2.2. Estimated Resident Population for Australia
4.2.3. Insolvencies in South Africa
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pourahmadi, M. Foundation of Time Series Analysis and Prediction Theory; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Pourahmadi, M. Stationarity of the solution of (Xt = AtXt−1+εt) and analysis of non-Gaussian dependent random variables. J. Time Ser. Anal. 1988, 9, 225–239. [Google Scholar] [CrossRef]
- Tarami, B.; Pourahmadi, M. Multi-variate t autoregressions: Innovations, prediction variances and exact likelihood equations. J. Time Ser. Anal. 2003, 24, 739–754. [Google Scholar] [CrossRef]
- Grunwald, G.K.; Hyndman, R.J.; Tedesco, L.; Tweedie, R.L. Theory & methods: Non-Gaussian conditional linear AR(1) models. Aust. N. Z. J. Stat. 2000, 42, 479–495. [Google Scholar]
- Bondon, P. Estimation of autoregressive models with epsilon-skew-normal innovations. J. Multivar. Anal. 2009, 100, 1761–1776. [Google Scholar] [CrossRef]
- Sharafi, M.; Nematollahi, A. AR(1) model with skew-normal innovations. Metrika 2016, 79, 1011–1029. [Google Scholar] [CrossRef]
- Ghasami, S.; Khodadadi, Z.; Maleki, M. Autoregressive processes with generalized hyperbolic innovations. Commun. Stat. Simul. Comput. 2019, 1–13. [Google Scholar] [CrossRef]
- Tuaç, Y.; Güney, Y.; Arslan, O. Parameter estimation of regression model with AR(p) error terms based on skew distributions with EM algorithm. Soft Comput. 2020, 24, 3309–3330. [Google Scholar] [CrossRef]
- Bekker, A.; Ferreira, J.; Arashi, M.; Rowland, B. Computational methods applied to a skewed generalized normal family. Commun. Stat. Simul. Comput. 2018, 1–14. [Google Scholar] [CrossRef]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Rowland, B.W. Skew-Normal Distributions: Advances in Theory with Applications. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2017. [Google Scholar]
- Jones, M.; Faddy, M. A skew extension of the t-distribution, with applications. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 65, 159–174. [Google Scholar] [CrossRef]
- Subbotin, M.T. On the law of frequency of error. Math. Collect. 1923, 31, 296–301. [Google Scholar]
- Hamilton, J.D. Time Series Analysis, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Elal-Olivero, D.; Gómez, H.W.; Quintana, F.A. Bayesian modeling using a class of bimodal skew-elliptical distributions. J. Stat. Plan. Inference 2009, 139, 1484–1492. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Cheung, Y.W.; Lai, K.S. Lag order and critical values of the Augmented Dickey–Fuller test. J. Bus. Econ. Stat. 1995, 13, 277–280. [Google Scholar]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 1996. [Google Scholar]
- Statistics South Africa. Available online: http://www.statssa.gov.za/?page_id=1854&PPN=P0043&SCH=72647 (accessed on 11 December 2019).
- Tong, H. Nonlinear Time Series, 6th ed.; Oxford Statistical Science Series; The Clarendon Press Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Fan, J.; Yao, Q. Nonlinear Time Series; Springer Series in Statistics; Springer: New York, NY, USA, 2003. [Google Scholar]
Parameter | Sample Size n | ||||
---|---|---|---|---|---|
100 | 500 | 1000 | 5000 | ||
3.374 (0.668) | 3.591 (0.197) | 4.054 (0.1367) | 4.011 (0.067) | ||
2.021 (0.553) | 2.509 (0.272) | 3.186 (0.263) | 3.042 (0.122) | ||
−9.188 (7.078) | −14.7189 (3.226) | −11.395 (1.848) | −11.807 (0.916) | ||
6.199 (0.421) | 6.023 (0.156) | 5.980 (0.136) | 6.018 (0.062) | ||
0.356 (0.064) | 0.395 (0.022) | 0.412 (0.019) | 0.400 (0.009) | ||
3.277 (0.638) | 3.596 (0.197) | 4.050 (0.137) | 4.009 (0.067) | ||
1.982 (0.544) | 2.513 (0.273) | 3.180 (0.264) | 3.038 (0.122) | ||
−7.899 (4.560) | −14.8478 (3.286) | −11.377 (1.856) | −11.786 (0.910) | ||
5.739 (0.430) | 6.068 (0.131) | 5.958 (0.126) | 6.028 (0.056) | ||
0.330 (0.078) | 0.392 (0.028) | 0.414 (0.022) | 0.408 (0.009) | ||
−0.107 (0.061) | −0.208 (0.023) | −0.194 (0.021) | −0.210 (0.009) | ||
3.104 (0.635) | 3.602 (0.196) | 4.043 (0.138) | 4.010 (0.066) | ||
1.834 (0.497) | 2.520 (0.273) | 3.166 (0.263) | 3.039 (0.122) | ||
−7.381 (3.565) | −15.297 (3.433) | −11.304 (1.843) | −11.825 (0.913) | ||
6.234 (0.596) | 5.931 (0.177) | 5.984 (0.165) | 6.090 (0.074) | ||
0.339 (0.076) | 0.398 (0.027) | 0.409 (0.022) | 0.405 (0.009) | ||
−0.116 (0.056) | −0.216 (0.023) | −0.193 (0.022) | −0.208 (0.010) | ||
0.001 (0.076) | 0.128 (0.022) | 0.096 (0.022) | 0.090 (0.009) | ||
3.484 (0.180) | 3.855 (0.072) | 4.048 (0.137) | 4.007 (0.066) | ||
30.733 (40.892) | 31.009 (9.872) | 3.180 (0.264) | 3.034 (0.121) | ||
1.541 (0.305) | 2.271 (0.191) | −11.496 (1.879) | −11.915 (0.916) | ||
5.215 (1.265) | 1.965 (0.456) | 6.160 (0.425) | 6.527 (0.194) | ||
0.296 (0.058) | 0.402 (0.024) | 0.414 (0.019) | 0.399 (0.008) | ||
−0.185 (0.058) | −0.209 (0.023) | −0.205 (0.021) | −0.214 (0.009) | ||
0.012 (0.081) | 0.086 (0.026) | 0.112 (0.022) | 0.093 (0.009) | ||
0.550 (0.074) | 0.536 (0.027) | 0.475 (0.019) | 0.497 (0.008) | ||
1.273 (0.582) | 3.840 (0.070) | 3.797 (0.131) | 3.686 (0.064) | ||
0.928 (0.255) | 35.158 (15.083) | 15.671 (2.697) | 14.487 (1.129) | ||
−1.190 (0.646) | 2.251 (0.189) | 2.177 (0.218) | 1.962 (0.094) | ||
5.986 (0.029) | 2.103 (0.207) | 2.415 (0.175) | 2.572 (0.081) | ||
0.352 (0.015) | 0.385 (0.024) | 0.412 (0.017) | 0.406 (0.007) | ||
−0.138 (0.019) | −0.192 (0.017) | −0.200 (0.016) | −0.204 (0.007) | ||
−0.012 (0.033) | 0.096 (0.018) | 0.109 (0.015) | 0.092 (0.007) | ||
0.499 (0.019) | 0.517 (0.019) | 0.480 (0.016) | 0.489 (0.007) | ||
−0.634 (0.024) | −0.570 (0.019) | −0.607 (0.016) | −0.610 (0.007) |
Parameter | ||||||
---|---|---|---|---|---|---|
3.869 | 2.804 | −11.510 | 5.895 | 0.383 | −0.215 | |
4.000 | 3.009 | −10.042 | 5.998 | 0.401 | −0.200 | |
4.116 | 3.236 | −8.880 | 6.096 | 0.415 | −0.182 |
Model | |||||
---|---|---|---|---|---|
AR(2) | ARSN(2) | ARSGN(2) | ARST(2) | ||
Parameter | 1.732 | 2.620 | 2.420 | 2.068 | |
(0.017) | (0.027) | (0.093) | (0.038) | ||
– | – | 1.237 | – | ||
(0.038) | |||||
– | 20.140 | 9.654 | 16.301 | ||
(1.431) | (0.973) | (1.429) | |||
– | – | – | 5.574 | ||
(0.424) | |||||
7.813 | 5.973 | 6.041 | 6.020 | ||
(0.162) | (0.062) | (0.074) | (0.059) | ||
0.387 | 0.395 | 0.394 | 0.394 | ||
(0.014) | (0.005) | (0.005) | (0.005) | ||
−0.176 | −0.197 | −0.194 | −0.196 | ||
(0.014) | (0.006) | (0.006) | (0.006) | ||
−9839.2 | −8612.9 | −8456.5 | −8426.4 | ||
AIC | 19,686.5 | 17,235.8 | 16,925.1 | 16,904.0 | |
Run time (s) | 3.47583 | 2.11189 | 3.88825 | 5.07767 |
Series | Sample Statistic | ||||||
---|---|---|---|---|---|---|---|
n | s | Min | Max | ||||
Viscosity | 310 | 9.133 | 0.603 | −0.465 | −0.583 | 7.4 | 10.4 |
Australian population * | 87 | −0.331 | 11.469 | −0.332 | 2.590 | −37.6 | 41 |
Insolvencies in South Africa * | 238 | −0.567 | 39.609 | 0.902 | 9.792 | −162 | 268 |
Model | |||||
---|---|---|---|---|---|
AR(1) | ARSN(1) | ARSGN(1) | ARST(1) | ||
Parameter | 0.300 | 0.386 | 0.134 | 0.228 | |
(0.012) | (0.030) | (0.038) | (0.025) | ||
– | – | 0.771 | – | ||
(0.103) | |||||
– | −1.324 | −0.033 | −0.186 | ||
(0.313) | (0.027) | (0.340) | |||
– | – | – | 4.177 | ||
(1.409) | |||||
1.197 | 1.515 | 0.598 | 0.871 | ||
(0.258) | (0.263) | (0.005) | (0.283) | ||
0.869 | 0.861 | 0.937 | 0.910 | ||
(0.028) | (0.028) | (0.001) | (0.028) | ||
−67.8 | −62.7 | −43.3 | −55.7 | ||
AIC | 141.5 | 133.4 | 96.6 | 121.5 | |
KS test statistic | 0.233 | 0.223 | 0.181 | 0.230 | |
Run time (s) | 0.15462 | 0.37018 | 0.52313 | 0.69936 |
Model | |||||
---|---|---|---|---|---|
AR(3) | ARSN(3) | ARSGN(3) | ARST(3) | ||
Parameter | 9.648 | 9.821 | 5.150 | 8.835 | |
(0.731) | (0.796) | (2.436) | (3.804) | ||
– | – | 0.834 | – | ||
(0.205) | |||||
– | 0.027 | −0.040 | −0.899 | ||
(1.451) | (0.055) | (1.154) | |||
– | – | – | 5.158 | ||
(4.154) | |||||
−0.362 | −0.573 | 0.497 | 5.347 | ||
(1.054) | (11.414) | (0.029) | (5.410) | ||
−0.544 | −0.544 | −0.545 | −0.545 | ||
(0.105) | (0.107) | (0.011) | (0.153) | ||
−0.458 | −0.458 | −0.378 | −0.420 | ||
(0.108) | (0.110) | (0.010) | (0.111) | ||
−0.262 | −0.262 | −0.327 | −0.239 | ||
(0.105) | (0.107) | (0.008) | (0.101) | ||
−320.7 | −311.1 | −304.0 | −305.8 | ||
AIC | 651.3 | 634.2 | 622.0 | 625.7 | |
KS test statistic | 0.286 | 0.274 | 0.226 | 0.262 | |
Run time (s) | 0.88435 | 0.74169 | 2.40199 | 2.48347 |
Model | |||||
---|---|---|---|---|---|
AR(2) | ARSN(2) | ARSGN(2) | ARST(2) | ||
Parameter | 35.370 | 35.531 | 24.448 | 25.258 | |
(1.621) | (1.661) | (4.386) | (3.067) | ||
– | – | 0.987 | – | ||
(0.113) | |||||
– | −0.009 | 0.119 | 0.472 | ||
(1.395) | (0.048) | (0.360) | |||
– | – | – | 3.590 | ||
(0.909) | |||||
−0.870 | −0.606 | −7.399 | −12.058 | ||
(2.304) | (39.502) | (0.205) | (6.827) | ||
−0.463 | −0.463 | −0.421 | −0.418 | ||
(0.063) | (0.063) | (0.031) | (0.059) | ||
−0.219 | −0.458 | −0.210 | −0.169 | ||
(0.063) | (0.063) | (0.031) | (0.061) | ||
−1186.4 | −1177.4 | −1154.3 | −1153.3 | ||
AIC | 2380.8 | 2364.8 | 2320.6 | 2318.6 | |
KS test statistic | 0.356 | 0.356 | 0.305 | 0.331 | |
Run time (s) | 0.42257 | 0.29679 | 1.32080 | 0.87772 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neethling, A.; Ferreira, J.; Bekker, A.; Naderi, M. Skew Generalized Normal Innovations for the AR(p) Process Endorsing Asymmetry. Symmetry 2020, 12, 1253. https://doi.org/10.3390/sym12081253
Neethling A, Ferreira J, Bekker A, Naderi M. Skew Generalized Normal Innovations for the AR(p) Process Endorsing Asymmetry. Symmetry. 2020; 12(8):1253. https://doi.org/10.3390/sym12081253
Chicago/Turabian StyleNeethling, Ané, Johan Ferreira, Andriëtte Bekker, and Mehrdad Naderi. 2020. "Skew Generalized Normal Innovations for the AR(p) Process Endorsing Asymmetry" Symmetry 12, no. 8: 1253. https://doi.org/10.3390/sym12081253