Stability Analysis of Charged Rotating Black Ring
<p>Hawking temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>H</mi> </msub> </semantics></math> versus <span class="html-italic">y</span> for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>50</mn> <mspace width="3.33333pt"/> <mi>to</mi> <mspace width="3.33333pt"/> <mn>150</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Ξ</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math></p> "> Figure 2
<p>Hawking temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>H</mi> </msub> </semantics></math> versus <span class="html-italic">x</span> and <span class="html-italic">y</span> for <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>50</mn> <mspace width="3.33333pt"/> <mi>to</mi> <mspace width="3.33333pt"/> <mn>150</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>Ξ</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math></p> ">
Abstract
:1. Introduction
2. Rotating Black Ring
3. Gravitational Stability Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharif, M.; Javed, W. Fermions tunneling from charged accelerating and rotating black holes with NUT parameter. Eur. Phys. J. C 2012, 72, 1997. [Google Scholar] [CrossRef]
- Sharif, M.; Javed, W. Tunneling from reissner-nordström-de sitter black hole with a global monopole. Int. J. Mod. Phys. Conf. Ser. 2013, 23, 271. [Google Scholar] [CrossRef]
- Sharif, M.; Javed, W. Fermions Tunneling from Plebanski-Demianski Black Holes. Gen. Relativ. Gravit. 2013, 45, 1051. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Javed, W. Thermodynamics of a Bardeen black hole in noncommutative space. Can. J. Phys. 2013, 91, 236. [Google Scholar] [CrossRef]
- Javed, W.; Abbas, G.; Ali, R. Charged vector particle tunneling from a pair of accelerating and rotating and 5D gauged super-gravity black holes. Eur. Phys. J. C 2017, 77, 296. [Google Scholar] [CrossRef] [Green Version]
- Övgün, A.; Javed, W.; Ali, R. Tunneling Glashow-Weinberg-Salam Model Particles from Black Hole Solutions in Rastall Theory. Adv. High Energy Phys. 2018, 2018, 3131620. [Google Scholar] [CrossRef]
- Javed, W.; Ali, R.; Abbas, G. Charged Vector Particles Tunneling From Black Ring and 5D Black Hole. Can. J. Phys. 2019, 97, 176. [Google Scholar] [CrossRef]
- Javed, W.; Ali, R.; Babar, R.; Övgün, A. Tunneling of massive vector particles from types of BTZ-like black holes. Eur. Phys. J. Plus 2019, 134, 511. [Google Scholar] [CrossRef] [Green Version]
- Sakalli, I.; Övgün, A.; Jusufi, K. GUP assisted Hawking radiation of rotating acoustic black holes. Astrophys. Space Sci. 2016, 361, 330. [Google Scholar] [CrossRef] [Green Version]
- Övgün, A.; Jusufi, K. Massive Vector Particles Tunneling From Noncommutative Charged Black Holes and its GUP-corrected Thermodynamics. Eur. Phys. J. Plus 2016, 131, 177. [Google Scholar] [CrossRef]
- Övgün, A.; Jusufi, K. The Effect of GUP to Massive Vector and Scalar Particles Tunneling From a Warped DGP Gravity Black Hole. Eur. Phys. J. Plus 2017, 132, 298. [Google Scholar] [CrossRef] [Green Version]
- Gecim, G.; Sucu, Y. Quantum gravity effect on the Hawking radiation of charged rotating BTZ black hole. Gen. Relativ. Gravit. 2018, 50, 152. [Google Scholar] [CrossRef] [Green Version]
- Javed, W.; Babar, R.; Övgün, A. Hawking radiation from cubic and quartic black holes via tunneling of GUP corrected scalar and fermion particles. Mod. Phys. Lett. A 2019, 34, 1950057. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Ali, M.Z.; Övgün, A. Charged fermions tunneling from stationary axially symmetric black holes with generalized uncertainty principle. Mod. Phys. Lett. A 2019, 34, 1950184. [Google Scholar] [CrossRef]
- Javed, W.; Ali, R.; Babar, R.; Övgün, A. Tunneling of massive vector particles under influence of quantum gravity. Chin. Phys. C 2020, 44, 015104. [Google Scholar] [CrossRef] [Green Version]
- Babar, R.; Javed, W.; Övgün, A. Effect of the GUP on the Hawking radiation of black hole in 2+1 dimensions with quintessence and charged BTZ-like magnetic black hole. Mod. Phys. Lett. A 2020, 35, 2050104. [Google Scholar] [CrossRef]
- Ali, R.; Bamba, K.; Shah, S.A.A. Effect of Quantum Gravity on the Stability of Black Holes. Symmetry 2019, 11, 631. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Asgher, M.; Malik, M.F. Gravitational analysis of neutral regular black hole in Rastall gravity. Mod. Phys. Lett. A 2020, 2050225. [Google Scholar] [CrossRef]
- Emparan, R.; Reall, H.S. A Rotating Black Ring Solution in Five Dimensions. Phys. Rev. Lett. 2002, 88, 101101. [Google Scholar] [CrossRef] [Green Version]
- Elvang, H. A charged rotating black ring. Phys. Rev. D 2003, 68, 124016. [Google Scholar] [CrossRef] [Green Version]
- Elvang, H. Black rings, supertubes, and a stringy resolution of black hole non-uniqueness. JHEP 2003, 11, 035. [Google Scholar] [CrossRef]
- Morisawa, Y.; Tomizawa, S.; Yasui, Y. Boundary value problem for black rings. Phys. Rev. D 2008, 77, 064019. [Google Scholar] [CrossRef] [Green Version]
- Rogatko, M. Uniqueness theorem for stationary black ring solutions of σ-models in five dimensions. Phys. Rev. D 2008, 77, 124037. [Google Scholar] [CrossRef] [Green Version]
- Tomizawa, S.; Yasui, Y.; Ishibashi, A. Uniqueness theorem for charged dipole rings in five-dimensional minimal supergravity. Phys. Rev. D 2010, 81, 084037. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L. Tunnelling through black rings. Commun. Theor. Phys. 2007, 47, 835. [Google Scholar]
- Jiang, Q.Q. Dirac particles’ tunnelling from black rings. Phys. Rev. D 2008, 78, 044009. [Google Scholar] [CrossRef] [Green Version]
- Shivalingaswamy, T.; Kagali, B.A. Eigenenergies of a Relativistic Particle in an Infinite Range Linear Potential Using WKB Method. Eur. J. Phys. Educ. 2011, 2, 1309. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.; Bamba, K.; Asgher, M.; Malik, M.F.; Shah, S.A.A. Stability Analysis of Charged Rotating Black Ring. Symmetry 2020, 12, 1165. https://doi.org/10.3390/sym12071165
Ali R, Bamba K, Asgher M, Malik MF, Shah SAA. Stability Analysis of Charged Rotating Black Ring. Symmetry. 2020; 12(7):1165. https://doi.org/10.3390/sym12071165
Chicago/Turabian StyleAli, Riasat, Kazuharu Bamba, Muhammad Asgher, Muhammad Fawad Malik, and Syed Asif Ali Shah. 2020. "Stability Analysis of Charged Rotating Black Ring" Symmetry 12, no. 7: 1165. https://doi.org/10.3390/sym12071165