Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis
<p>The relaying network model.</p> "> Figure 2
<p>The energy harvesting (EH) and delay-tolerant (DT) processes in the power-splitting (PS) protocol.</p> "> Figure 3
<p>Outage probability (OP) versus <span class="html-italic">ρ</span>.</p> "> Figure 4
<p>System throughput (ST) versus <span class="html-italic">ρ</span>.</p> "> Figure 5
<p>OP versus <span class="html-italic">η</span>.</p> "> Figure 6
<p>ST versus <span class="html-italic">η</span>.</p> "> Figure 7
<p>OP versus relay (R).</p> "> Figure 8
<p>ST versus relay (R).</p> "> Figure 9
<p>OP versus <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>ST versus <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 11
<p>Optimal PS factor versus <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> in delay-limited transmission (DLT).</p> "> Figure 12
<p>Optimal PS factor versus <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> in delay-tolerant transmission (DTT).</p> "> Figure 13
<p>ST comparison between DTT and DLT versus <span class="html-italic">ρ</span>.</p> "> Figure 14
<p>ST comparison between DTT and DLT versus <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 15
<p>ST comparison between DTT and DLT versus <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Relaying Network Model
3. Outage Probability and Throughput Analysis
3.1. Delay-Limited Transmission (DLT)
3.1.1. The Outage Probability (OP)
3.1.2. Average System Throughput (ST)
3.2. Delay-Tolerant Transmission (DTT)
3.3. Optimal PS Factor
4. Numerical Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 2015, 53, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Niyato, D.; Kim, D.I.; Maso, M.; Han, Z. Wireless Powered Communication Networks: Research Directions and Technological Approaches. IEEE Wirel. Commun. 2017, 24, 88–97. [Google Scholar] [CrossRef]
- Yu, H.; Lee, H.; Jeon, H. What is 5G? Emerging 5G Mobile Services and Network Requirements. Sustainability 2017, 9, 1848. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhang, R.; Ho, C.K. Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff. IEEE Trans. Commun. 2013, 61, 4754–4767. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.; Tran, M.; Ha, D.; Trang, T.T.; Voznak, M. Multi-source in DF Cooperative Networks with the PSR Protocol Based Full-duplex Energy Harvesting over a Rayleigh Fading Channel: Performance Analysis. Proc. Est. Acad. Sci. 2019, 68, 264. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Tran, M.; Nguyen, T.L.; Ha, D.H.; Voznak, M. Performance Analysis of a User Selection Protocol in Cooperative Networks with Power Splitting Protocol-Based Energy Harvesting Over Nakagami-m/Rayleigh Channels. Electronics 2019, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Quang Minh, T.; Tran, P.; Vozňák, M. Energy Harvesting over Rician Fading Channel: A Performance Analysis for Half-Duplex Bidirectional Sensor Networks under Hardware Impairments. Sensors 2018, 18, 1781. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Chen, H.; Li, Y.; Vucetic, B. An adaptive transmission protocol for wireless-powered cooperative communications. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 4223–4228. [Google Scholar]
- Ju, H.; Zhang, R. Throughput Maximization in Wireless Powered Communication Networks. IEEE Trans. Wirel. Commun. 2014, 13, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, M.R. On the Capacity of Decode-and-Forward Relaying over Rician Fading Channels. IEEE Commun. Lett. 2013, 17, 1100–1103. [Google Scholar] [CrossRef] [Green Version]
- Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013, 12, 3622–3636. [Google Scholar] [CrossRef] [Green Version]
- Tan, N.; Nguyen, T.H.Q.; Minh, P.; Tran, T.; Voznak, M. Adaptive Energy Harvesting Relaying Protocol for Two-Way Half Duplex System Network over Rician Fading Channels. Wirel. Commun. Mob. Comput. 2018, 2018, 10. [Google Scholar]
- Gu, Y.; Aissa, S. RF-Based Energy Harvesting in Decode-and-Forward Relaying Systems: Ergodic and Outage Capacities. IEEE Trans. Wirel. Commun. 2015, 14, 6425–6434. [Google Scholar] [CrossRef]
- Li, T.; Fan, P.; Letaief, K.B. Outage Probability of Energy Harvesting Relay-Aided Cooperative Networks over Rayleigh Fading Channel. IEEE Trans. Veh. Technol. 2016, 65, 972–978. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Lin, Z.; Li, Y.; Vucetic, B. Distributed resource allocation for power beacon-assisted wireless-powered communications. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 3849–3854. [Google Scholar]
- Huang, K.; Lau, V.K.N. Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment. IEEE Trans. Wirel. Commun. 2014, 13, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Jeon, Y.-S.; Han, S. Energy Beamforming for Wireless Power Transfer in MISO Heterogeneous Network With Power Beacon. IEEE Commun. Lett. 2017, 21, 1163–1166. [Google Scholar] [CrossRef]
- Zhong, C.; Jin, S.; Wong, K.-K.; Mckay, M.R. Ergodic Mutual Information Analysis for Multi-Keyhole MIMO Channels. IEEE Trans. Wirel. Commun. 2011, 10, 1754–1763. [Google Scholar] [CrossRef]
- Duong, T.Q.; Duy, T.T.; Matthaiou, M.; Tsiftsis, T.; Karagiannidis, G.K. Cognitive cooperative networks in dual-hop asymmetric fading channels. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 955–961. [Google Scholar]
- Zwillinger, D. Table of Integrals, Series, and Products; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Chong, E.K.P.; Zak, S.H. An Introduction to Optimization, 4th ed.; Wiley: New York, NY, USA, 2013; pp. 1–640. [Google Scholar]
- Nguyen, T.N.; Minh, T.H.Q.; Tran, P.T.; Voznak, M.; Duy, T.T.; Nguyen, T.L.; Tin, P.T. Performance Enhancement for Energy Harvesting Based Two-way Relay Protocols in Wireless Ad-hoc Networks with Partial and Full Relay Selection Methods. Ad Hoc Netw. 2019, 84, 178–187. [Google Scholar] [CrossRef]
- Tan, N.; Phuong, N.; Tran, T.; Minh, T.H.Q.; Voznak, M. Two-Way Half Duplex Decode and Forward Relaying Network with Hardware Impairment over Rician Fading Channel: System Performance Analysis. Elektron. Ir Elektrotechnika 2018, 24, 74–78. [Google Scholar]
- Phan, V.D.; Nguyen, T.N.; Tran, M.; Trang, T.T.; Voznak, M.; Ha, D.H.; Nguyen, T.L. Power Beacon-Assisted Energy Harvesting in a Half-Duplex Communication Network under Co-Channel Interference over a Rayleigh Fading Environment: Energy Efficiency and Outage Probability Analysis. Energies 2019, 12, 2579. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.; Tran, M.; Ha, D.H.; Nguyen, T.L.; Vozňák, M. Energy Harvesting Based Two-way Full-duplex Relaying Network over a Rician Fading Environment: Performance Analysis. Proc. Est. Acad. Sci. 2019, 68, 111. [Google Scholar] [CrossRef]
- Nguyen, T.; Tran, M.; Nguyen, T.L.; Ha, D.H.; Voznak, M. Multisource Power Splitting Energy Harvesting Relaying Network in Half-Duplex System over Block Rayleigh Fading Channel: System Performance Analysis. Electronics 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.; Tran, M.; Tran, P.T.; Tin, P.T.; Nguyen, T.L.; Ha, D.H.; Voznak, M. On the Performance of Power Splitting Energy Harvested Wireless Full-Duplex Relaying Network with Imperfect CSI over Dissimilar Channels. Secur. Commun. Netw. 2018, 2018, 6036087. [Google Scholar] [CrossRef]
- Nguyen, T.; Tran Tin, P.; Ha, D.; Voznak, M.; Tran, P.; Tran, M.; Nguyen, T.L. Hybrid TSR–PSR Alternate Energy Harvesting Relay Network over Rician Fading Channels: Outage Probability and SER Analysis. Sensors 2018, 18, 3839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Symbol | Name | Values |
---|---|---|
Energy-harvesting efficiency | 0.05–0.95 | |
Mean of | 0.5 | |
Mean of | 0.5 | |
Mean of | 0.5 | |
Mean of | 0.5 | |
γth | SNR threshold | 1 |
PB/N0 | Beacon power-to-noise ratio | 0–30 dB |
R | Source rate | 1 bps/Hz |
ρ | Power-splitting factor | 0.05–0.95 |
α | Time-switching factor | 0.05–0.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tin, P.T.; Dinh, B.H.; Nguyen, T.N.; Ha, D.H.; Trang, T.T. Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry 2020, 12, 106. https://doi.org/10.3390/sym12010106
Tin PT, Dinh BH, Nguyen TN, Ha DH, Trang TT. Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry. 2020; 12(1):106. https://doi.org/10.3390/sym12010106
Chicago/Turabian StyleTin, Phu Tran, Bach Hoang Dinh, Tan N. Nguyen, Duy Hung Ha, and Tran Thanh Trang. 2020. "Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis" Symmetry 12, no. 1: 106. https://doi.org/10.3390/sym12010106
APA StyleTin, P. T., Dinh, B. H., Nguyen, T. N., Ha, D. H., & Trang, T. T. (2020). Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry, 12(1), 106. https://doi.org/10.3390/sym12010106