A Method to Determine Core Design Problems and a Corresponding Solution Strategy
<p>Hierarchical representation model of design problem.</p> "> Figure 2
<p>Product hierarchy model.</p> "> Figure 3
<p>Product design process based on solving the core problem.</p> "> Figure 4
<p>CRT of bad parameters of the coolant flow distribution device.</p> "> Figure 5
<p>Hierarchical structure model of coolant flow distribution device.</p> "> Figure 6
<p>CRD diagram of core problem <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>p</mi> <mn>2</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>Conceptual design scheme of coolant flow distribution device: (1) core support plate; (2) radial support key; (3) flow equalizing plate; (4) flow distribution cylinder; (5) supporting column; (6) energy-absorbing device; (7) pressure vessel bottom head; (I) inverted cone structure; (II) cap structure.</p> "> Figure 8
<p>CRD diagram of core problem <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p>CRD diagram of the core problem <math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>p</mi> <mn>3</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>CRD diagram of the root cause <math display="inline"><semantics> <mrow> <mi>R</mi> <msubsup> <mi>c</mi> <mn>1</mn> <mn>1</mn> </msubsup> </mrow> </semantics></math>.</p> "> Figure 11
<p>Velocity vectors of cross section of lower chamber. The velocity of the coolant around the upper surface of the core support plate is slightly greater than that in the middle. Although the velocity is not exactly the same on the upper surface, the velocity of the coolant in the middle is basically the same. What is more, the change of velocity consistency from the middle to the periphery is very small. This proves the effectiveness of the flow distribution effect of the design scheme. The direction of coolant flow in the lower chamber is stable, the variation degree of the flow direction is slow, and there is only a few of vortices. Structurally, the structure of the lower chamber is simplified by reducing the number of supporting columns and detachable connectors. Therefore, the design scheme has the characteristics of good flow distribution effect, a few of vortices, and simple structures.</p> ">
Abstract
:1. Introduction
2. Establishment and Transformation of Hierarchical Representation Model of Design Problem
3. Method to Determine Core Problems Based on Analytic Network Process
3.1. Construction of Network Layer and Control Layer for Design Problem
3.2. Calculation of Importance of Root Causes and Determination of Core Problems
4. Product Design Process Based on Solving the Core Problem
5. Case Studies
5.1. Importance Analysis of Root Causes of the Coolant Flow Distribution Device
5.2. Solving the Root Causes Sequentially Based on Importance
5.3. Conceptual Design Scheme Generation
5.4. Simulation Analysis
- (1)
- Turbulent model: K-epsilon (2 eqn)-standard
- (2)
- Fluid material: water (liquid)
- (3)
- Wall: no slip
- (4)
- Inlet (velocity inlet): velocity magnitude: 5.084 m/s;turbulent intensity: 1.755%; hydraulic diameter: 1200 mm
- (5)
- Outlet (pressure outlet): gauge pressure: 0 pa
- (6)
- Convergence absolute criterion:
- (7)
- Number of meshes: 5.37 million
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mugge, R.; Dahl, D.W. Seeking the Ideal Level of Design Newness: Consumer Response to Radical and Incremental Product Design. J. Prod. Innovat. Mang. 2013, 30, 34–47. [Google Scholar] [CrossRef]
- Wood, K.L.; Jensen, D.; Bezdek, J. Reverse engineering and redesign: Courses to incrementally and systematically teach design. J. Eng. Educ. 2001, 90, 363–374. [Google Scholar] [CrossRef]
- Parsons, G. The Philosophy of Design, 1st ed.; Polity Press: Cambridge, UK, 2016. [Google Scholar]
- Li, Y.; Li, X.L.; Zhao, W. Research on product creative design with cognitive psychology. Comput. Integr. Manuf. Syst. 2005, 9, 1201–1207. [Google Scholar]
- Ko, Y.; Chen, M.; Yang, C. Modelling a contradiction-oriented design approach for innovative product design. Proc. Inst. Mech. Eng. B-J. Eng. 2014, 229, 199–211. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Wang, J. The process model to aid innovation of products conceptual design. Expert Syst. Appl. 2010, 37, 3574–3587. [Google Scholar] [CrossRef]
- Cho, H.; Park, J. Cost-effective concept development using functional modeling guidelines. Robot Comput. Integr. Manuf. 2019, 55, 234–249. [Google Scholar] [CrossRef]
- Li, T. RETRACTED ARTICLE: Applying TRIZ and AHP to develop innovative design for automated assembly systems. Int. J. Adv. Manuf. Technol. 2010, 46, 1–4. [Google Scholar] [CrossRef]
- Vinodh, S.; Kamala, V.; Jayakrishna, K. Integration of ECQFD, TRIZ, and AHP for innovative and sustainable product development. Appl. Math. Model. 2014, 38, 2758–2770. [Google Scholar] [CrossRef]
- Lucchetta, G.; Bariani, P.F.; Knight, W.A. Integrated Design Analysis for Product Simplification. CIRP. Ann.-Manuf Technol. 2005, 54, 147–150. [Google Scholar] [CrossRef]
- Caligiana, G.; Liverani, A.; Francia, D. Integrating QFD and TRIZ for innovative design. J. Adv. Mech. Des. Sys. Manuf. 2017, 11, JAMDSM0015. [Google Scholar] [CrossRef]
- Liu, X.Z.; Qi, G.N.; Fu, J.Z. A design process model of integrated morphological matrix and conflict resolving principles. J. Zhejiang Univ.-SCI. 2012, 12, 2243–2251. [Google Scholar]
- Li, M.; Ming, X.; Zheng, M. An integrated TRIZ approach for technological process and product innovation. Proc. Inst. Mech. Eng. B-J. Eng. 2015, 231, 1062–1077. [Google Scholar] [CrossRef]
- Ko, Y. Modeling a hybrid-compact design matrix for new product innovation. Comput. Ind. Eng. 2017, 107, 345–359. [Google Scholar] [CrossRef]
- Stratton, R.; Mann, D. Systematic innovation and the underlying principles behind TRIZ and TOC. J. Mater. Process Technol. 2003, 139, 120–126. [Google Scholar] [CrossRef]
- Nahavandi, N.; Parsaei, Z.; Montazeri, M. Integrated framework for using TRIZ and TOC together: A case study. Int. J. Bus. Innov. Res. 2011, 5, 309–324. [Google Scholar] [CrossRef]
- Huang, W.; Hou, L.; Zhao, N. Product Innovation and Evaluation Based on TOC and TRIZ. Adv. Mater. Res. 2012, 421, 709–712. [Google Scholar] [CrossRef]
- Hua, Z.; Gu, L.; Wang, W. TOC & TRIZ based product design method and its application. Comput. Integr. Manuf. Syst. 2006, 817–822. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Ai, H. Research on application of process model for product concept creative design based on TRIZ and TOC. Int. J. Interact. Des. Manuf. 2017, 11, 957–966. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, R.; Hao, B. The Problem Flow Network Building and Solving Process Model for Complex Product. Chin. J. Mech. Eng. 2018, 1–15. [Google Scholar] [CrossRef]
- Wei, Z.; Tan, R.; Ma, L. Research on complex problem analysis in TRIZ. In Proceedings of the IEEE 2008 International Conference on Management of Innovation and Technology, Bangkok, Thailand, 21–24 September 2008. [Google Scholar] [CrossRef]
- Shu, M.; Cheng, C.; Chang, J. Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 2006, 46, 2139–2148. [Google Scholar] [CrossRef]
- Hiraoka, Y.; Murakami, T.; Yamamoto, K. Method of Computer-Aided Fault Tree Analysis for High-Reliable and Safety Design. IEEE Trans. Reliab. 2016, 65, 687–703. [Google Scholar] [CrossRef]
- Morello, M.G.; Cavalca, K.L.; Silveira, Z.D.C. Development and reduction of a fault tree for gearboxes of heavy commercial vehicles based on identification of critical components. Qual. Reliab. Eng. Int. 2010, 24, 183–198. [Google Scholar] [CrossRef]
- Garcia, P.A.A.; Schirru, R.; Frutuoso, E.; Melo, P.F. A fuzzy data envelopment analysis approach for FMEA. Prog. Nucl. Energy 2005, 46, 359–373. [Google Scholar] [CrossRef]
- Azadeh, A.; Sheikhalishahi, M.; Aghsami, A. An integrated FTA-DFMEA approach for reliability analysis and product configuration considering warranty cost. Prod. Eng. Res. Devel. 2015, 9, 635–646. [Google Scholar] [CrossRef]
- Zhai, G.; Zhou, Y.; Ye, X. A method of multi-objective reliability tolerance design for electronic circuits. Chin. J. Aeronaut. 2013, 26, 161–170. [Google Scholar] [CrossRef]
- Mocko, G.M.; Paasch, R. Incorporating Uncertainty in Diagnostic Analysis of Mechanical Systems. In Proceedings of the ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, QC, Canada, 29 September–2 October 2002. [Google Scholar] [CrossRef]
- Yazdani, A.; Tavakkoli-Moghaddam, R. Integration of the fish bone diagram, brainstorming, and AHP method for problem solving and decision making—A case study. Int. J. Adv. Manuf. Technol. 2012, 63, 651–657. [Google Scholar] [CrossRef]
- Zhang, X.; Auriol, G.; Eres, H. A prescriptive approach to qualify and quantify customer value for value-based requirements engineering. Int. J. Comput. Integr. Manuf. 2013, 26, 327–345. [Google Scholar] [CrossRef]
- Shimomura, Y.; Nemoto, Y.; Ishii, T. A method for identifying customer orientations and requirements for product–service systems design. Int. J. Prod. Res. 2017, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, M.; Xie, Y. A new model of conceptual design based on Scientific Ontology and intentionality theory. Part II: The process model. Des. Stud. 2015, 38, 139–160. [Google Scholar] [CrossRef]
- Thomas, L.S.; Luis, G.V. Decision Making with the Analytic Network Process; Springer: Berlin, Germany, 2013. [Google Scholar]
- Huang, Y.; Bian, L. A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet. Expert Syst. Appl. 2009, 36, 933–943. [Google Scholar] [CrossRef]
- Yüksel, İ.; Dagˇdeviren, M. Using the analytic network process (ANP) in a SWOT analysis—A case study for a textile firm. Inform Sci. 2007, 177, 3364–3382. [Google Scholar] [CrossRef]
- Jeong, J.H.; Han, B. Coolant flow field in a real geometry of PWR downcomer and lower plenum. Ann. Nucl. Energy 2008, 35, 610–619. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Fang, C. Optimization Design of Reactor Lower Plenum. Nucl. Power Eng. 2014, 59–63. [Google Scholar] [CrossRef]
- Yan, B.H.; Zhang, G.; Gu, H.Y. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet. Ann. Nucl. Energy 2012, 41, 17–25. [Google Scholar] [CrossRef]
- Piancastelli, L.; Gatti, A.; Frizziero, L. CFD analysis of the Zimmerman’s V173 stol aircraft. Asian Res. Publ. Netw. (ARPN) J. Eng. Appl. Sci. 2015, 10, 8063–8070. [Google Scholar]
Ratio Scale | Meaning (If: Element 1 Is A; Element 2 Is B; The Third Party Element Is C) |
---|---|
1 | A and B have the same effect on C |
3 | The effect of A on C is slightly larger than the effect of B on C |
5 | The effect of A on C is medially larger than the effect of B on C |
7 | The effect of A on C is highly larger than the effect of B on C |
9 | The effect of A on C is extremely larger than the effect of B on C |
2,4,6,8 | Median value of the above adjacent scale |
Reciprocal of the above scale | The ratio of the effect of A on C to the effect of B on C is ; The ratio of the effect of B on C to the effect of A on C is |
Weight Vector | |||||
---|---|---|---|---|---|
Weight Vector | |||||
---|---|---|---|---|---|
Weight Vector | |||||
---|---|---|---|---|---|
1 | 6 | 3 | 1/2 | 0.33393 | |
1/6 | 1 | 1/2 | 1/6 | 0.06607 | |
1/3 | 2 | 1 | 1/3 | 0.13214 | |
2 | 6 | 3 | 1 | 0.46786 |
0.25000 | 0.33333 | 0.16667 | 0.14286 | 0.12500 | 0.12500 | 0.50000 | 0.16667 | 0.14286 | |
0.75000 | 0.66667 | 0.83333 | 0.85714 | 0.87500 | 0.87500 | 0.50000 | 0.83333 | 0.85714 | |
1.00000 | 0.54545 | 0.59489 | 0.28571 | 0.63275 | 0.30915 | 1.00000 | 1.00000 | 0.28571 | |
0.00000 | 0.27273 | 0.27661 | 0.57143 | 0.19240 | 0.58126 | 0.00000 | 0.00000 | 0.57143 | |
0.00000 | 0.18182 | 0.12850 | 0.14286 | 0.17485 | 0.10959 | 0.00000 | 0.00000 | 0.14286 | |
0.00000 | 0.33393 | 0.33333 | 0.83333 | 0.33333 | 0.15385 | 0.12500 | 0.33333 | 0.54545 | |
0.00000 | 0.06607 | 0.00000 | 0.00000 | 0.00000 | 0.07692 | 0.25000 | 0.33333 | 0.18182 | |
0.00000 | 0.13214 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1.00000 | 0.46786 | 0.66667 | 0.16667 | 0.66667 | 0.76923 | 0.62500 | 0.33333 | 0.27273 |
0.40000 | 0.26429 | 0.30915 | |
0.40000 | 0.64556 | 0.58126 | |
0.20000 | 0.09015 | 0.10959 |
0.10000 | 0.13333 | 0.04405 | 0.03776 | 0.03304 | 0.03864 | 0.15458 | 0.05153 | 0.04416 | |
0.30000 | 0.26667 | 0.22024 | 0.22653 | 0.23125 | 0.27051 | 0.15458 | 0.25763 | 0.26499 | |
0.40000 | 0.21818 | 0.38404 | 0.18445 | 0.40848 | 0.17970 | 0.58126 | 0.58126 | 0.16608 | |
0.00000 | 0.10909 | 0.17857 | 0.36889 | 0.12420 | 0.33787 | 0.00000 | 0.00000 | 0.33215 | |
0.00000 | 0.07273 | 0.08296 | 0.09222 | 0.11288 | 0.06370 | 0.00000 | 0.00000 | 0.08304 | |
0.00000 | 0.06679 | 0.03005 | 0.07513 | 0.03005 | 0.01686 | 0.01370 | 0.03653 | 0.05977 | |
0.00000 | 0.01321 | 0.00000 | 0.00000 | 0.00000 | 0.00843 | 0.02740 | 0.03653 | 0.01992 | |
0.00000 | 0.02643 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
0.20000 | 0.09357 | 0.06010 | 0.01503 | 0.06010 | 0.08430 | 0.06849 | 0.03653 | 0.02989 |
0.06797 | 0.06797 | 0.06797 | 0.06797 | 0.06797 | 0.06797 | 0.06797 | 0.06797 | 0.06797 | |
0.24441 | 0.24441 | 0.24441 | 0.24441 | 0.24441 | 0.24441 | 0.24441 | 0.24441 | 0.24441 | |
0.28464 | 0.28464 | 0.28464 | 0.28464 | 0.28464 | 0.28464 | 0.28464 | 0.28464 | 0.28464 | |
0.19897 | 0.19897 | 0.19897 | 0.19897 | 0.19897 | 0.19897 | 0.19897 | 0.19897 | 0.19897 | |
0.07708 | 0.07708 | 0.07708 | 0.07708 | 0.07708 | 0.07708 | 0.07708 | 0.07708 | 0.07708 | |
0.04730 | 0.04730 | 0.04730 | 0.04730 | 0.04730 | 0.04730 | 0.04730 | 0.04730 | 0.04730 | |
0.00536 | 0.00536 | 0.00536 | 0.00536 | 0.00536 | 0.00536 | 0.00536 | 0.00536 | 0.00536 | |
0.00646 | 0.00646 | 0.00646 | 0.00646 | 0.00646 | 0.00646 | 0.00646 | 0.00646 | 0.00646 | |
0.06781 | 0.06781 | 0.06781 | 0.06781 | 0.06781 | 0.06781 | 0.06781 | 0.06781 | 0.06781 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Li, W.; Luo, Y.; Li, Y.; Li, S. A Method to Determine Core Design Problems and a Corresponding Solution Strategy. Symmetry 2019, 11, 576. https://doi.org/10.3390/sym11040576
Xie Y, Li W, Luo Y, Li Y, Li S. A Method to Determine Core Design Problems and a Corresponding Solution Strategy. Symmetry. 2019; 11(4):576. https://doi.org/10.3390/sym11040576
Chicago/Turabian StyleXie, Yuanming, Wenqiang Li, Yin Luo, Yan Li, and Song Li. 2019. "A Method to Determine Core Design Problems and a Corresponding Solution Strategy" Symmetry 11, no. 4: 576. https://doi.org/10.3390/sym11040576