An Exact Analytical Solution for Thermoelastic Response of Clamped Beams Subjected to a Movable Laser Pulse
<p>Temporal variations of <math display="inline"><semantics> <mi>T</mi> </semantics></math> at different axial locations on the surface of <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0.005</mn> <mi mathvariant="normal">m</mi> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>20</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 2
<p>Temperatures with maximum peak value for different laser velocities.</p> "> Figure 3
<p>Deflections at the midspan point for three velocities of laser pulse.</p> "> Figure 4
<p>Deflection along the beam span (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>20</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 5
<p>Deflection along the beam span (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>100</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 6
<p>Deflection along the beam span (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>200</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 7
<p>Frequency spectra of deflection for different velocities of the laser pulse.</p> "> Figure 8
<p>Deflection, velocity, and acceleration of the beam at the midspan point (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>20</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 9
<p>Acceleration along the beam span (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>20</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 10
<p>Acceleration along the beam span (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>100</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 11
<p>Acceleration along the beam span (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>200</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 12
<p>Stress at two locations (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>20</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 13
<p>Stress at two locations (<math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>200</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> <mo>/</mo> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>).</p> "> Figure 14
<p>Time histories of the total stress and its two components at the midspan on the top surface of the beam (<math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mtext> </mtext> <mi>ms</mi> </mrow> </semantics></math>).</p> "> Figure 15
<p>Time histories of the total stress and its two components at the midspan on the top surface of the beam (<math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>0.5</mn> <mtext> </mtext> <mi>ms</mi> </mrow> </semantics></math>).</p> "> Figure 16
<p>Time histories of the total stress and its two components at the midspan on the top surface of the beam (<math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> <mtext> </mtext> <mi>ms</mi> </mrow> </semantics></math>).</p> "> Figure 17
<p>Vibration acceleration vs <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>p</mi> </msub> </mrow> </semantics></math> at the midspan of the beam.</p> ">
Abstract
:1. Introduction
2. Basic Formulations for This Problem
3. Solutions to the Governing Equations
3.1. Solution to the Heat Conduction Equation
3.2. Solution of the Vibration Equation
4. Calculation Results and Discussions
4.1. Temperature Variation
4.2. Deflection Variation
4.3. Frequency Spectra of Deflection
4.4. Vibration Behaviors and Properties of the Beam
4.5. Behaviors of Stress
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Levin, P. A general solution of 3-D quasi-steady-state problem of a moving heat source on a semi-infinite solid. Mech. Res. Commun. 2008, 35, 151–157. [Google Scholar] [CrossRef]
- Shuja, S.Z.; Yilbas, B.S. Laser multi-beam heating of moving steel sheet: Thermal stress analysis. Opt. Laser Eng. 2013, 51, 446–452. [Google Scholar] [CrossRef]
- Cui, Y.; Bian, Z.G.; Li, Y.H.; Xing, Y.F.; Song, J.Z. 3D thermal analysis of rectangular microscale inorganic light-emitting diodes in a pulsed operation. J. Phys. D Appl. Phys. 2016, 49, 405101. [Google Scholar] [CrossRef]
- Guan, Y.J.; Sun, S.; Zhao, G.Q.; Luan, Y.G. Finite element modeling of laser bending of pre-loaded sheet metal. J. Mater. Proc. Technol. 2003, 142, 400–407. [Google Scholar]
- Abbas, I.A. Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties. Meccanica 2014, 49, 1697–1708. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Ali, H.; Yousef, A. Thermal stress analysis and entropy generation rate due to laser short pulse heating of a metallic surface. Can. J. Phys. 2014, 92, 1681–1687. [Google Scholar] [CrossRef]
- Zhou, J.H.; Zhang, Y.W.; Chen, J.K. Non-Fourier heat conduction effect on laser-induced thermal damage in biological tissues. Numer. Heat Transf. Part A Appl. 2008, 54, 1–19. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhang, L.; Chu, Z.X. Thermomechanical Coupling of Non-Fourier Heat Conduction with the C-V Model: Thermal Propagation in Coating Systems. J. Therm. Stress. 2015, 38, 1104–1117. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Abbas, I.A. Nonlinear Transient Thermal Stress Analysis of Temperature-Dependent Hollow Cylinders Using a Finite Element Model. Int. J. Struct. Stab. Dyn. 2014, 14, 1450025. [Google Scholar] [CrossRef]
- Lykotrafitis, G.; Georgiadis, H.G. The three-dimensional steady-state thermo- elastodynamic problem of moving source over a half space. Int. J. Solids Struct. 2003, 40, 899–940. [Google Scholar] [CrossRef]
- Yevtushenko, A.A.; Ukhanska, O.M. The thermal stresses and displacements in a two-dimensional convective half-space for a moving heat source. Int. J. Heat Mass Transf. 1994, 37, 2737–2743. [Google Scholar] [CrossRef]
- Sarbani, C.; Amitava, C. Transient disturbances in a relaxing thermoelastic half space due to moving internal heat source. Int. J. Math. Math. Sci. 1998, 21, 595–602. [Google Scholar]
- Abbas, I.A. A GN model for thermoelastic interaction in a microscale beam subjected to a moving heat source. Acta Mech. 2015, 226, 2527–2536. [Google Scholar] [CrossRef]
- Lotfy, K. The elastic wave motions for a photothermal medium of a dual-phase- lag model with an internal heat source and gravitational field. Can. J. Phys. 2016, 94, 400–409. [Google Scholar] [CrossRef]
- Xiong, C.B.; Guo, Y. Effect of variable properties and moving heat source on magnetothermoelastic problem under fractional order thermoelasticity. Adv. Mater. Sci. Eng. 2016, 5341569. [Google Scholar] [CrossRef]
- Hsieh, H.S.; Lin, J.M. Laser-induced vibration during pulsed laser forming. Opt. Laser Technol. 2004, 36, 431–439. [Google Scholar] [CrossRef]
- Philp, W.R.; Booth, D.J.; Peery, N.D. Single pulse laser excitation of structure vibration using power density below the surface ablation threshold. J. Sound Vib. 1995, 185, 643–654. [Google Scholar] [CrossRef]
- Widlaszewski, J. Precise laser bending. In Proceedings of the Laser Assisted Net shape Engineering 2 (LANE’97), Erlangen, Germany, 23–26 September 1997; pp. 393–398. [Google Scholar]
- Chen, G.; Xu, X.; Poon, C.C.; Tam, A.C. Experimental and numerical studies on micro-scale bending of stainless steel with pulsed laser. Trans. ASME 1999, 66, 772–779. [Google Scholar] [CrossRef]
- Castellini, P.; Revel, G.M.; Scalise, L.; De Andrade, R.M. Experimental and numerical investigation on structural effects of laser pulses for modal parameter measurement. Opt. Laser Eng. 2000, 32, 565–581. [Google Scholar] [CrossRef]
- Ozisik, M.N. Heat Conduction; John Wiley & Sons, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Yang, C.Y. The determination of two moving heat sources in two-dimensional inverse heat problem. Appl. Math. Model. 2006, 20, 278–292. [Google Scholar] [CrossRef]
- Youssef, H.M. A two-temperature generalized thermoelastic medium subjected to a moving heat source and ramp-type heating: A state-space approach. J. Mech. Mater. Struct. 2009, 4, 1637–1648. [Google Scholar] [CrossRef]
- Kidwa-Kukla, J. Vibration of a beam induced by harmonic motion of a heat source. J. Sound Vib. 1997, 205, 213–222. [Google Scholar] [CrossRef]
- Shabana, A.A. Theory of Vibration, Volume II: Discrete and Continuous Systems; Springer: Berlin, Germany, 1992. [Google Scholar]
- Sun, Y.X.; Jiang, Y.; Yang, J.L. Thermoelastic damping of the axisymmetric vibration of laminated trilayered circular plate resonators. Can. J. Phys. 2014, 92, 1026–1032. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Ma, J.; Liu, S.; Xing, Y.; Yang, J.; Sun, Y. An Exact Analytical Solution for Thermoelastic Response of Clamped Beams Subjected to a Movable Laser Pulse. Symmetry 2018, 10, 139. https://doi.org/10.3390/sym10050139
Yang X, Ma J, Liu S, Xing Y, Yang J, Sun Y. An Exact Analytical Solution for Thermoelastic Response of Clamped Beams Subjected to a Movable Laser Pulse. Symmetry. 2018; 10(5):139. https://doi.org/10.3390/sym10050139
Chicago/Turabian StyleYang, Xianfeng, Jingxuan Ma, Shoubin Liu, Yun Xing, Jialing Yang, and Yuxin Sun. 2018. "An Exact Analytical Solution for Thermoelastic Response of Clamped Beams Subjected to a Movable Laser Pulse" Symmetry 10, no. 5: 139. https://doi.org/10.3390/sym10050139