Spatiotemporal Changes of Farming-Pastoral Ecotone in Northern China, 1954–2005: A Case Study in Zhenlai County, Jilin Province
<p>Location of the study area, Zhenlai County.</p> "> Figure 2
<p>All the possible trajectories of the land use/cover change in the study period.</p> "> Figure 3
<p>Percentage of area of each land category, 1954–2005.</p> "> Figure 4
<p>Land use/cover maps for the years (<b>a</b>) 1954; (<b>b</b>) 1976; (<b>c</b>) 2000 and (<b>d</b>) 2005.</p> "> Figure 5
<p>Cumulative transition areas from 1954 to 2005 (×10,000 ha).</p> "> Figure 6
<p>Trajectories of unchanged land use (<b>a</b>) and land use changes (<b>b</b>,<b>c</b>), 1954–2005.</p> "> Figure 7
<p>Spatial Lorenz curves of various land use types.</p> "> Figure 8
<p>Changes in Gini coefficients of different land use types from 1954 to 2005.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.3. Classification System
2.4. Methods
2.4.1. Transition Probabilities Matrix for Land Use/Land Cover Dynamics
2.4.2. Trajectory Computing Method
2.4.3. Establishing the Trajectories of Land Use
Human-induced type | Natural evolution-induced type | ||||||
---|---|---|---|---|---|---|---|
A→F | A→G | A→S | F→A | A→W | A→M | A→O | G→W |
F→G | F→S | G→A | G→F | G→M | G→O | W→G | W→M |
G→S | W→A | W→F | W→S | W→O | M→G | M→W | M→O |
M→A | M→F | M→S | O→F | O→G | O→W | O→M |
2.4.4. Spatial Lorenz Curve and Gini Coefficient
3. Results and Discussion
3.1. Land Use and Land Cover Change (1954–2005)
3.1.1. Temporal Properties
Categories | Area (in ha) and percentages (%) | Changes (in ha) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1954 | 1976 | 2000 | 2005 | 1954–1976 | 1976–2000 | 2000–2005 | |||||
Area | % | Area | % | Area | % | Area | % | ||||
Arable land | 16,7355.69 | 31.48 | 19,2533.35 | 36.22 | 198,950.45 | 37.42 | 207,717.83 | 39.07 | 25,177.66 | 6417.10 | 8767.38 |
Forest land | 488.65 | 0.09 | 12,117.17 | 2.28 | 19,065.53 | 3.59 | 18,900.88 | 3.56 | 11,628.51 | 6948.36 | –164.65 |
Grassland | 16,2371.84 | 30.54 | 88,892.09 | 16.72 | 60,215.14 | 11.33 | 65,223.77 | 12.27 | −73,479.75 | −28,676.94 | 5008.63 |
Water | 26,000.01 | 4.89 | 29,352.35 | 5.52 | 30,024.12 | 5.65 | 29,259.09 | 5.50 | 3352.34 | 671.78 | –765.03 |
Settlement | 2944.58 | 0.55 | 11,109.70 | 2.09 | 12,503.21 | 2.35 | 12,547.33 | 2.36 | 8165.12 | 1393.51 | 44.12 |
Wetland | 17,1500.15 | 32.26 | 111,101.27 | 20.90 | 107,753.65 | 20.27 | 99,975.96 | 18.81 | −60,398.88 | –3347.62 | −7777.69 |
Other unused land | 945.22 | 0.18 | 86,500.22 | 16.27 | 103,094.04 | 19.39 | 97,981.28 | 18.43 | 85,555.01 | 16,593.82 | −5112.76 |
3.1.2. Bitemporal Change Detection
Categories | Period | Arable land | Forest land | Grassland | Water | Settlement | Wetland | Other unused land |
---|---|---|---|---|---|---|---|---|
Arable land | 1954–1976 | 56.19 | 3.74 | 15.58 | 2.01 | 5.55 | 8.51 | 8.42 |
1976–2000 | 81.27 | 1.80 | 2.91 | 0.10 | 2.84 | 11.05 | 0.04 | |
2000–2005 | 84.97 | 5.87 | 0.00 | 0.00 | 9.16 | 0.00 | 0.00 | |
Forest land | 1954–1976 | 12.99 | 21.04 | 57.91 | 0.00 | 5.26 | 2.81 | 0.00 |
1976–2000 | 19.93 | 79.80 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 | |
2000–2005 | 15.86 | 84.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Grassland | 1954–1976 | 38.90 | 3.96 | 18.28 | 2.25 | 1.15 | 24.55 | 10.90 |
1976–2000 | 10.11 | 9.83 | 54.66 | 0.23 | 0.13 | 0.84 | 24.20 | |
2000–2005 | 16.19 | 0.00 | 83.81 | 0.00 | 0.00 | 0.00 | 0.00 | |
Water | 1954–1976 | 5.89 | 0.19 | 4.78 | 41.97 | 0.14 | 25.16 | 21.87 |
1976–2000 | 2.50 | 2.50 | 2.50 | 85.00 | 2.50 | 2.50 | 2.50 | |
2000–2005 | 1.39 | 0.00 | 3.15 | 70.41 | 0.00 | 23.33 | 1.72 | |
Settlement | 1954–1976 | 36.31 | 0.79 | 5.91 | 0.82 | 42.04 | 3.76 | 10.37 |
1976–2000 | 2.50 | 2.50 | 2.50 | 2.50 | 85.00 | 2.50 | 2.50 | |
2000–2005 | 2.50 | 2.50 | 2.50 | 2.50 | 85.00 | 2.50 | 2.50 | |
Wetland | 1954–1976 | 11.79 | 0.58 | 20.15 | 6.02 | 0.41 | 27.70 | 33.35 |
1976–2000 | 16.75 | 0.00 | 4.05 | 0.83 | 0.00 | 77.86 | 0.52 | |
2000–2005 | 15.45 | 0.00 | 0.25 | 8.68 | 0.00 | 75.62 | 0.00 | |
Other unused land | 1954–1976 | 0.44 | 0.00 | 1.14 | 85.29 | 0.00 | 7.53 | 5.60 |
1976–2000 | 0.69 | 0.00 | 0.00 | 3.20 | 0.33 | 11.33 | 84.44 | |
2000–2005 | 0.09 | 0.00 | 18.64 | 0.55 | 0.00 | 0.19 | 80.53 |
1954–2005 | Arable land | Forest land | Grassland | Water | Settlement | Wetland | Other unused land | Total |
---|---|---|---|---|---|---|---|---|
Arable land | 0.00 | 4.03 | 5.96 | 0.67 | 6.20 | 6.68 | 2.67 | 26.20 |
Forest land | 1.04 | 0.00 | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 | 1.10 |
Grassland | 15.41 | 2.85 | 0.00 | 0.73 | 0.37 | 7.64 | 7.38 | 34.37 |
Water | 0.50 | 0.15 | 0.55 | 0.00 | 0.14 | 2.69 | 1.30 | 5.34 |
Settlement | 0.31 | 0.12 | 0.14 | 0.12 | 0.00 | 0.13 | 0.17 | 0.99 |
Wetland | 10.44 | 0.19 | 7.40 | 3.87 | 0.13 | 0.00 | 10.87 | 32.90 |
Other unused land | 0.13 | 0.00 | 3.62 | 0.78 | 0.05 | 1.89 | 0.00 | 6.47 |
3.1.3. Spatial Distributions and Trajectories of Land Cover Change
Unchanged land use | % | Unchanged land use | % | Unchanged land use | % | Unchanged land use | % |
---|---|---|---|---|---|---|---|
A | 64.80 | F | 24.97 | G | 13.53 | W | 44.91 |
S | 49.33 | M | 27.26 | O | 6.88 |
Changed types | % | Changed types | % | Changed types | % | Changed types | % | |
---|---|---|---|---|---|---|---|---|
One-step changes | A→G | 3.28 | A→S | 2.33 | A→F | 1.55 | A→O | 3.13 |
A→W | 0.53 | A→M | 3.11 | G→A | 18.33 | G→S | 0.53 | |
G→F | 2.05 | G→O | 6.22 | G→W | 0.84 | G→M | 8.71 | |
F→G | 0.02 | F→A | 0.02 | F→S | 0.01 | W→G | 0.28 | |
W→A | 0.38 | W→S | 0.01 | W→F | 0.01 | W→O | 1.44 | |
W→M | 1.56 | S→G | 0.03 | S→A | 0.25 | S→O | 0.08 | |
S→W | 0.01 | S→M | 0.03 | M→G | 6.80 | M→A | 6.17 | |
M→S | 0.19 | M→F | 0.26 | M→O | 14.95 | M→W | 3.25 | |
O→W | 0.20 | O→M | 0.02 | |||||
Two-step changes | A→G→A | 0.40 | A→G→S | 0.01 | A→G→F | 1.43 | A→G→O | 0.62 |
A→G→M | 0.03 | A→F→A | 0.06 | A→O→G | 0.06 | A→O→A | 0.01 | |
A→O→M | 0.01 | A→W→G | 0.02 | A→W→M | 0.21 | A→M→A | 0.25 | |
A→M→W | 0.02 | G→A→G | 0.23 | G→A→S | 0.08 | G→A→F | 0.04 | |
G→A→M | 0.48 | G→F→A | 0.19 | G→O→G | 0.52 | G→O→A | 0.01 | |
G→O→W | 0.06 | G→W→G | 0.01 | G→W→M | 0.18 | G→M→G | 0.37 | |
G→M→A | 1.93 | G→M→O | 0.03 | G→M→W | 0.16 | S→G→O | 0.01 | |
S→A→S | 0.02 | S→A→F | 0.01 | F→G→F | 0.05 | O→W→G | 0.03 | |
W→G→O | 0.11 | W→G→W | 0.01 | W→G→M | 0.01 | W→O→G | 0.02 | |
W→O→W | 0.01 | W→O→M | 0.02 | W→M→G | 0.01 | W→M→A | 0.21 | |
W→M→O | 0.01 | W→M→W | 0.05 | M→G→A | 0.37 | M→G→S | 0.01 | |
M→G→F | 0.10 | M→G→O | 2.08 | M→G→W | 0.01 | M→G→M | 0.12 | |
M→A→G | 0.14 | M→A→S | 0.07 | M→A→W | 0.01 | M→A→M | 0.37 | |
M→F→A | 0.02 | M→O→G | 0.60 | M→O→W | 0.01 | M→O→M | 0.10 | |
M→W→G | 0.01 | M→W→A | 0.03 | M→W→O | 0.04 | M→W→M | 0.55 | |
Three-step changes | A→G→O→G | 0.20 | A→G→W→M | 0.01 | A→M→W→M | 0.01 | F→G→O→G | 0.01 |
G→A→G→A | 0.01 | G→A→M→A | 0.21 | G→M→W→M | 0.04 | W→A→M→A | 0.04 | |
W→G→O→G | 0.01 | W→M→W→M | 0.01 | M→A→M→A | 0.20 | M→G→O→G | 0.10 | |
M→G→W→M | 0.03 |
3.2. Land Use Structure
Year | Arable land | Forest land | Grassland | Water | Settlement | Wetland | Other unused land |
---|---|---|---|---|---|---|---|
1954 | 0.2407 | 0.9513 | 0.2900 | 0.4121 | 0.3222 | 0.2513 | 0.8661 |
1976 | 0.2195 | 0.5711 | 0.2964 | 0.4000 | 0.2640 | 0.4395 | 0.4253 |
2000 | 0.2116 | 0.4394 | 0.3136 | 0.3924 | 0.2770 | 0.4626 | 0.3672 |
2005 | 0.1845 | 0.4386 | 0.2759 | 0.4700 | 0.2760 | 0.4253 | 0.3872 |
Average value | 0.2141 | 0.6001 | 0.2939 | 0.4186 | 0.2848 | 0.3947 | 0.5115 |
Distribution division | Decentralization | Absolute concentration | Decentralization | Concentration | Decentralization | Appropriate concentration | Absolute concentration |
4. Conclusions
- (1)
- The results of bitemporal change detection showed that land use/cover changed significantly in Zhenlai County from 1954 to 2005. Arable land expanded at the expense of grassland and wetland. Meanwhile, plenty of grassland was converted to other unused land, indicating serious environmental degradation in Zhenlai County during the past decades.
- (2)
- Trajectory analysis of land use and land cover change demonstrated that settlement, arable land, and water bodies were relatively stable in terms of coverage and spatial distribution, while grassland, wetland, and forest land had weak stability. Many transitions from wetland to other unused land indicated that land degradation had difficult reversibility. Furthermore, human-induced changes, representing an irreversible impact on the environment, could be distinguished from changes caused by natural forces by using this trajectory analysis. The results suggested that natural forces were still dominating the environmental processes of the study area, with unchanged (35.83% of the total area) and indecisive changes between land-cover types (37.28%). However, human-induced changes, constituting 26.89% of the total area, also played an important role in environmental change.
- (3)
- The research showed that the Lorenz curve/Gini coefficient could be applied effectively to analyze the land use structure changes. The seven types of land use displayed different concentration trends and had large changes during 1954 and 2005. Arable land was the most decentralized, whereas forest land was the most concentrated.
- (4)
- Previous studies of spatiotemporal changes mainly focused on analyzing the categorical changes of land cover with the accumulation of remotely sensed images using a bitemporal detection method. It assumed spatially homogeneous transition rates and therefore was of limited use in projecting future changes. The above results not only revealed notable spatiotemporal features of land use/cover change in the time series, but also confirmed the applicability and effectiveness of the combined methods of bitemporal change detection, temporal trajectory analysis, and a Lorenz curve/Gini coefficient. Integrating methods of bitemporal change detection and temporal trajectory analysis could explore the trajectories of land cover change by analyzing the extent to which land use conversion is explained by the concept of stability and by distinguishing human-induced land changes from natural evolution types, and then could effectively trace the paths of land cover change for every location. Meanwhile, the Lorenz curve and Gini coefficient of economic models could supplement and reveal the regularity in land use structural changes to gain a better understanding of the human impact on this fragile ecosystem.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.; Swanson, F.; Aber, J.; Burke, I.; Brokaw, N.; Tilman, D.; Knapp, A. The importance of land-use legacies to ecology and conservation. Bioscience 2003, 53, 77–88. [Google Scholar] [CrossRef]
- Gragson, T.L.; Bolstad, P.V. Land use legacies and the future of southern Appalachia. Soc. Nat. Resour. 2006, 19, 175–190. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomesf, O.T.; Dirzog, R.; Fischerh, G.; Folkei, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Chauchard, S.; Carcaillet, C.; Guibal, F. Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 2007, 10, 936–948. [Google Scholar] [CrossRef]
- DeFries, R.S.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Nelll, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem service and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, X.B.; Su, W.; Li, Y. Simulating the optimal land-use pattern in the farming-pastoral transitional zone of Northern China. Computers. Environ. Urban Syst. 2008, 32, 407–414. [Google Scholar] [CrossRef]
- Wang, J.A.; Xu, X.; Liu, P.F. Land use and carrying capacity in ecotone between agriculture and animal husbandry in northern China. Resour. Sci. 1999, 21, 19–24. (In Chinese) [Google Scholar]
- Lin, N.; Tang, J.; Bian, J.M.; Yang, J.Q. The quaternary environmental evolution and the problem of desertification in northeast plain. Quat. Sci. 1999, 5, 448–455. [Google Scholar]
- Ren, C.Y.; Zhang, B.; Wang, Z.M.; Song, K.S.; Liu, D.W.; Liu, Z.M. A GIS-based Tupu analysis of dynamics of saline-alkali land in western Jilin province. Chin. Geogr. Sci. 2007, 17, 333–340. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhang, B.; Yu, L.; Zhang, S.Q.; Wang, Z.M. Study on LUCC and the ecological security response of wetlands in western Jilin province. Arid Zone Res. 2004, 21, 97–103. (In Chinese) [Google Scholar]
- Zang, L.J.; Jiang, Q.G.; Wang, F.Y. Adjustment of land utilization structure in Zhenlai County. Glob. Geol. 2010, 29, 149–154. (In Chinese) [Google Scholar]
- Tang, J.; Wang, X.G. Analysis of the land use structure changes based on Lorenz curves. Environ. Monit. Assess. 2009, 151, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Zhang, B.; Zhang, S.Q.; Wang, Z.M. Study on dynamics of landscape and responses of ecological security to it in west Jilin province. J. Soil Water Conserv. 2005, 19, 131–136. (In Chinese) [Google Scholar]
- Rogan, J.; Chen, D.M. Remote sensing technology for mapping and monitoring land-cover and land-use change. Progr. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Xiao, H.L.; Weng, Q.H. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 2007, 85, 245–257. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Shafizadeh Moghadam, H.; Helbich, M. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Appl. Geogr. 2013, 40, 140–149. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Li, J.; Deng, Y.H. Urban land use change detection using multisensory satellite images. Pedosphere 2009, 19, 96–103. [Google Scholar] [CrossRef]
- Weber, C.; Petropoulou, C.; Hirsch, J. Urban development in the Athens metropolitan area using remote sensing data with supervised analysis and GIS. Int. J. Remote Sens. 2005, 26, 785–796. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Long, H.L.; Wu, X.Q.; Wang, W.J.; Dong, G.H. Analysis of urban-rural land-use change during 1995–2006 and its policy dimensional driving forces in Chongqing, China. Sensors 2008, 8, 681–699. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, M.Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.G.; Gries, C. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landsc. Urban Plan. 2010, 94, 206–217. [Google Scholar] [CrossRef]
- Zhou, Q.M.; Li, B.L.; Kurban, A. Trajectory analysis of land cover change in arid environment of China. Int. J. Remote Sens. 2008, 29, 1093–1107. [Google Scholar] [CrossRef]
- Wang, D.C.; Gong, J.H.; Chen, L.D.; Zhang, L.H.; Song, Y.Q.; Yue, Y.J. Comparative analysis of land use/cover change trajectories and their driving forces in two small watersheds in the western Loess Plateau of China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 241–252. [Google Scholar] [CrossRef]
- Mertens, B.; Lambin, E.F. Land-cover-change trajectories in southern Cameroon. Ann. Assoc. Am. Geogr. 2000, 90, 467–494. [Google Scholar] [CrossRef]
- Wang, D.C.; Gong, J.H.; Chen, L.D.; Zhang, L.H.; Song, Y.Q.; Yue, Y.J. Spatio-temporal pattern analysis of land use/cover change trajectories in Xihe watershed. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 12–21. [Google Scholar] [CrossRef]
- Zhou, Q.M.; Li, B.L.; Kurban, A. Spatial pattern analysis of land cover change trajectories in Tarim Basin, northwest China. Int. J. Remote Sens. 2008, 29, 5495–5509. [Google Scholar] [CrossRef]
- Swetnam, R.D. Rural land use in England and Wales between 1930 and 1998: Mapping trajectories of change with a high resolution spatio-temporal dataset. Landsc. Urban Plan. 2007, 81, 91–103. [Google Scholar] [CrossRef]
- Bai, S.Y.; Zhang, S.W. A study on the spatial-temporal land use conversion in county region–Taking Duerbete county as an example. J. Arid Land Resour. Environ. 2005, 19, 67–70. (In Chinese) [Google Scholar]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.J.; Chen, J.K.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Isong, M.; Eyo, E.; Eyoh, A.; Nwanekezie, O.; Olayinka, D.N.; Udoudo, D.O.; Ofem, B. GIS cellular automata using artificial neural network for land use change simulation of Lagos, Nigeria. J. Geogr. Geol. 2012, 4, 94–101. [Google Scholar]
- Lin, Y.P.; Chu, H.J.; Wu, C.F.; Verburg, P.H. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling—A case study. Int. J. Geogr. Inf. Sci. 2011, 25, 65–87. [Google Scholar] [CrossRef]
- Lin, Z.M.; Xia, B.; Dong, W.J. Analysis on temporal-spatial changes of land-use structure in Guangdong province based on information entropy. Trop. Geogr. 2011, 31, 266–271. (In Chinese) [Google Scholar]
- Henseler, M.; Wirsig, A.; Herrmann, S.; Krimly, T.; Dabbert, S. Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach. Agric. Syst. 2009, 100, 31–42. [Google Scholar] [CrossRef]
- Huang, Y.; Xia, B.; Yang, L. Relationship study on land use spatial distribution structure and energy-related carbon emission intensity in different land use types of Guangdong, China, 1996–2008. Sci. World J. 2013, 2013. Article ID 309680. [Google Scholar]
- Zheng, X.Q.; Xia, T.; Yang, X.; Yuan, T.; Hu, Y.C. The land Gini coefficient and its application for land use structure analysis in China. PLoS One 2013, 8, e76165. [Google Scholar] [CrossRef] [PubMed]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Petit, C.C.; Lambin, E.F. Long-term land-cover changes in the Belgian Ardennes (1775–1929): Model-based reconstruction vs. Historical maps. Glob. Chang. Biol. 2002, 8, 616–630. [Google Scholar] [CrossRef]
- Local Record of Zhenlai County; Jilin People’s Press: Changchun, China, 1995. (In Chinese)
- Bai, S.Y.; Zhang, S.W. The discussion of the method of land utilization spatial information reappearance of history period. J. Arid Land Resour. Environ. 2004, 18, 77–80. (In Chinese) [Google Scholar]
- Bai, S.Y.; Zhang, S.W.; Zhang, Y.Z. Study on the method of diagnose the plowland spacial distribution in historical era. Syst. Sci. Comp. Stud. Agric. 2005, 21, 252–255. (In Chinese) [Google Scholar]
- Liu, J.Y.; Liu, M.L.; Zhuang, D.F.; Zhang, Z.X.; Deng, X.Z. Study on spatial pattern of land-use change in China during 1995–2000. Science China 2003, 46, 374–384. [Google Scholar] [CrossRef]
- Bai, S.Y.; Zhang, S.W.; Zhang, Y.Z. Stages and determinants of farmland development and driving forces in Duerbote County during the past 50 years. Resour. Sci. 2005, 27, 71–76. (In Chinese) [Google Scholar]
- Lu, X.N.; Deng, W.; Zhang, S.Q.; Xong, D.H.; Xin, X. Land-use changes along the lower reaches of Huolin river in the last 50 years. J. Arid Land Resour. Environ. 2007, 21, 68–74. (In Chinese) [Google Scholar]
- Liu, X.N.; Huang, F. Analysis of the regional co-environmental effect driving by LUCC. J. Northeast Norm. Univ. 2002, 34, 87–92. (In Chinese) [Google Scholar]
- Song, K.S.; Liu, D.W.; Wang, Z.M.; Zhang, B.; Jin, C.; Li, F.; Liu, H.J. Land use change in Saijiang plain and its driving forces analysis since 1954. Acta Geogr. Sinica 2008, 63, 93–104. (In Chinese) [Google Scholar]
- Wang, X.G.; Tang, J.; Li, Z.Y.; Wang, C.Y. Analysis of land use structure change in western of Jilin province based on Lorrenze curves. Res. Agric. Mod. 2007, 28, 310–313. (In Chinese) [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, S.; Wang, D.; Yang, J.; Xing, X. Spatiotemporal Changes of Farming-Pastoral Ecotone in Northern China, 1954–2005: A Case Study in Zhenlai County, Jilin Province. Sustainability 2015, 7, 1-22. https://doi.org/10.3390/su7010001
Yang Y, Zhang S, Wang D, Yang J, Xing X. Spatiotemporal Changes of Farming-Pastoral Ecotone in Northern China, 1954–2005: A Case Study in Zhenlai County, Jilin Province. Sustainability. 2015; 7(1):1-22. https://doi.org/10.3390/su7010001
Chicago/Turabian StyleYang, Yuanyuan, Shuwen Zhang, Dongyan Wang, Jiuchun Yang, and Xiaoshi Xing. 2015. "Spatiotemporal Changes of Farming-Pastoral Ecotone in Northern China, 1954–2005: A Case Study in Zhenlai County, Jilin Province" Sustainability 7, no. 1: 1-22. https://doi.org/10.3390/su7010001
APA StyleYang, Y., Zhang, S., Wang, D., Yang, J., & Xing, X. (2015). Spatiotemporal Changes of Farming-Pastoral Ecotone in Northern China, 1954–2005: A Case Study in Zhenlai County, Jilin Province. Sustainability, 7(1), 1-22. https://doi.org/10.3390/su7010001