Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model
<p>Time-space diagram for AM–BAND–PBAND.</p> "> Figure 2
<p>Four different phase sequences of overlapping phase.</p> "> Figure 3
<p>Six different phase sequences of split phase.</p> "> Figure 4
<p>Channelization and geographical location of each intersection-case study.</p> "> Figure 5
<p>Current signal-timing scheme of each intersection-case study.</p> "> Figure 6
<p>Comparison of time series of traffic volume from 14:40 to 15:40: (<b>a</b>) first day; (<b>b</b>) the next day; (<b>c</b>) third day.</p> "> Figure 7
<p>Relationship between speed and traffic volume diagram: (<b>a</b>) outbound; (<b>b</b>) inbound.</p> "> Figure 8
<p>Time-space diagram generated by AM–BAND.</p> "> Figure 9
<p>Time–space diagram generated by PBAND.</p> "> Figure 10
<p>Time–space diagram generated by AM–BAND–PBAND.</p> "> Figure 11
<p>Simulation results of coordination direction of each model: (<b>a</b>) average number of stops; (<b>b</b>) average travel time; (<b>c</b>) average travel speed; (<b>d</b>) average delay time.</p> "> Figure 12
<p>Simulation results of uncoordinated direction of each model: (<b>a</b>) average number of stops; (<b>b</b>) average travel time; (<b>c</b>) average delay time; (<b>d</b>) average travel speed.</p> "> Figure 13
<p>Channelization and geographical location of each intersection.</p> "> Figure 14
<p>Simulation results of coordination directions of each model: (<b>a</b>) average travel time; (<b>b</b>) average travel speed; (<b>c</b>) average number of stops; (<b>d</b>) average delay time.</p> "> Figure 15
<p>Simulation results of uncoordinated directions of each model: (<b>a</b>) average number of stops; (<b>b</b>) average travel time; (<b>c</b>) average delay time; (<b>d</b>) average travel speed.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Hypothetical Conditions
- The traffic demand of each intersection on urban arterial roads is in a relatively stable unsaturated state.
- The distance between adjacent intersections on arterial roads is generally less than 1200 m to ensure a high degree of correlation between intersections.
- The left-turn traffic volume in the coordinated direction of each intersection is less than the straight traffic volume. In addition, the right-turn traffic flow is not controlled by signal scheme, and the volume is small.
- Motor vehicles strictly obey traffic rules. This does not take into account the impacts of bus stops, pedestrians and nonmotorized vehicles.
- The signal-timing scheme is fixed. The phase interval time is not set.
3.2. AM–BAND–PBAND Model
3.2.1. Objective Function
3.2.2. Constraints
3.3. Optimization Principles for AM-BAND-PBAND Model
3.4. Solution Method
4. Case Study
4.1. Data Collection
4.1.1. Channelization Scheme and Current Signal-Timing Scheme
4.1.2. Time Correlation Analysis of Traffic Flow
4.1.3. Vehicle Speed Distribution
4.1.4. Relationship between Speed and Traffic Volume
4.2. Test Design and Results Analysis
4.2.1. Time–Space Diagrams
4.2.2. VISSIM Simulation Results
5. Sensitivity Analysis
6. Numerical Experiments Extension
7. Managerial Insights
8. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, K.; Yang, Y.; Qu, X. Diverging effects of subjective prospect values of uncertain time and money. Commun. Transp. Res. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, S. Dynamic signal control for at-grade intersections under preliminary autonomous vehicle environment. J. Cent. South Univ. 2019, 26, 893–904. [Google Scholar] [CrossRef]
- Morgan, J.T.; Little, J.D.C. Synchronizing traffic signals for maximal bandwidth. Oper. Res. 1964, 12, 896–912. [Google Scholar] [CrossRef]
- Yao, J.; Tang, Q.; Wang, P. A Multiroute Signal Control Model considering Coordination Rate of Green Bandwidth. J. Adv. Transp. 2021, 2021, 4310403. [Google Scholar] [CrossRef]
- Gartner, N.H.; Assmann, S.F.; Lasaga, F.; Hou, D. MULTIBAND—A variable-bandwidth arteries progression scheme. Transp. Res. Rec. 1990, 1287, 212–222. [Google Scholar]
- Zhang, C.; Xie, Y.; Gartner, N.H.; Stamatiadis, C.; Arsava, T. Am-band: An asymmetrical multi-band model for arterial traffic signal coordination. Transp. Res. Part C-EMER 2015, 58, 515–531. [Google Scholar] [CrossRef]
- Peng, X.; Wang, H. Coordinated control model for arterials with asymmetric traffic. J. Intell. Transp. Syst. 2022. [CrossRef]
- Ma, W.; Zou, L.; An, K.; Gartner, N.H.; Wang, M. A partition-enabled multi-mode band approach to arterial traffic signal optimization. IEEE Trans. Intell. Transp. Syst. 2019, 20, 313–322. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, H.; Li, X.; Yao, Y. An integrated arterial coordinated control model considering green wave on branch roads and pedestrian crossing time at intersections. J. Manag. Sci. Eng. 2020, 5, 303–317. [Google Scholar] [CrossRef]
- Wang, B.B. Research on Multi-Bandwidth Bidirectional Green Wave Control Optimization Method of Urban Arterial Roads. Master Thesis, Changsha University of Science & Technology, Changsha, China, 2019. [Google Scholar]
- Hillier, J.A.; Richard, R. The synchronization of traffic signals for minimum delay. Transp. Sci. 1967, 1, 81–94. [Google Scholar] [CrossRef]
- Qu, D.; Wan, M.; Wang, Z.; Xu, X.; Wang, J. Green Wave Coordinate Control Method for Arterial Traffic Based on Traffic Wave Theory. J. Highw. Transp. Res. Dev. 2017, 11, 65–73. [Google Scholar] [CrossRef]
- Zheng, Y.; Guo, R.; Ma, D.; Zhao, Z.; Li, X. A Novel Approach to Coordinating Green Wave System with Adaptation Evolutionary Strategy. IEEE Access 2020, 8, 214115–214127. [Google Scholar] [CrossRef]
- Yao, J.; Tan, C.; Tang, K. An optimization model for arterial coordination control based on sampled vehicle trajectories: The STREAM model. Transp. Res. Part C-EMER 2019, 109, 211–232. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Q.; Xue, H.; Xu, X. A coordinated signal control method for arterial road of adjacent intersections based on the improved genetic algorithm. Optik 2016, 127, 6625–6640. [Google Scholar]
- Khanchehzarrin, S.; Shahmizad, M.; Mahdavi, I.; Mahdavi-Amiri, N.; Ghasemi, P. A model for the time dependent vehicle routing problem with time windows under traffic conditions with intelligent travel times. Rairo-Oper. Res. 2021, 55, 2203–2222. [Google Scholar] [CrossRef]
- Askari, R.; Sebt, M.V.; Amjadian, A. A Multi-product EPQ Model for Defective Production and Inspection with Single Machine, and Operational Constraints: Stochastic Programming Approach. Commun. Comput. Infor. Sci. 2021, 1458, 161–193. [Google Scholar]
- Rafael, L.C.S.; Alireza, G.; Ahmed, S.; Abolfazl, G. Robust job-shop scheduling under deterministic and stochastic unavailability constraints due to preventive and corrective maintenance. Comput. Ind. Eng. 2022, 168, 108130. [Google Scholar]
- Gharaei, A.; Amjadian, A.; Amjadian, A.; Shavandi, A.; Hashemi, A.; Taher, M.; Mohamadi, N. An integrated lot-sizing policy for the inventory management of constrained multi-level supply chains: Null-space method. Int. J. Syst. Sci. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Li, J.Q. Bandwidth Synchronization Under Progression Time Uncertainty. IEEE Trans. Intell. Transp. Syst. 2014, 15, 749–759. [Google Scholar]
- Wang, P.; Jiang, Y.; Xiao, L.; Zhao, Y.; Li, Y. A joint control model for connected vehicle platoon and arterial signal coordination. J. Intell. Transp. Syst. 2020, 24, 81–92. [Google Scholar] [CrossRef]
- Gu, J.; Lee, M.; Jun, C.; Han, Y.; Kim, Y.; Kim, J. Traffic Signal Optimization for Multiple Intersections Based on Reinforcement Learning. Appl. Sci. 2021, 11, 10688. [Google Scholar] [CrossRef]
- Joo, H.; Lim, Y. Intelligent Traffic Signal Phase Distribution System Using Deep Q-Network. Appl. Sci. 2022, 12, 425. [Google Scholar] [CrossRef]
- Arsava, T.; Xie, Y.; Gartner, N. OD-NETBAND: An Approach for Origin-Destination Based Network Progression Band Optimization. Transp. Res. Rec. 2018, 2672, 58–70. [Google Scholar] [CrossRef]
- Yan, H.; He, F.; Lin, X.; Yu, J.; Li, M.; Wang, Y. Network-level multiband signal coordination scheme based on vehicle trajectory data. Transp. Res. Part C-EMER 2019, 107, 266–286. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, Y.; Chang, G. A multi-path progression model for synchronization of arterial traffic signals. Transp. Res. Part C-EMER 2015, 53, 93–111. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Chang, G. Design of an arterial signal progression plan for multi-path flows with only intersection turning counts. Transp. Res. Part C-EMER 2021, 130, 103322. [Google Scholar] [CrossRef]
- Lu, K.; Liu, Y.; Wu, H. Algebraic Method of Bidirectional Green Wave Coordinated Control Under Asymmetric Traffic Conditions. China J. Highw. Transp. 2015, 28, 95–103. [Google Scholar]
- Lu, K.; Xu, J.; Li, Y. Algebraic Method of Arterial Road Coordinate Control for Bidirectional Green Wave Under Signal Design Mode of One-phase-one-approach. China J. Highw. Transp. 2010, 23, 95–101. [Google Scholar]
- Lu, K.; Hu, J.; Huang, J. Optimisation model for network progression coordinated control under the signal design mode of split phasing. IET. Intell. Transp. Syst. 2017, 11, 459–466. [Google Scholar] [CrossRef]
- Liang, Z.; Xiao, Y.; Flotterod, Y.P. An Overlapping Phase Approach to Optimize Bus Signal Priority Control under Two-Way Signal Coordination on Urban Arterials. J. Adv. Transp. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, H.; Huang, F.; Wang, H.; Chen, D. Design on Optimization of Phase for Urban Traffic Coordinated Control. In Proceedings of the 2017 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 9–10 December 2017; pp. 178–182. [Google Scholar]
- Jing, B.; Lin, Y.; Shou, Y.; Lu, K.; Xu, J. Pband: A General Signal Progression Model with Phase Optimization along Urban Arterial. IEEE. Trans. Intell. Transp. 2020, 99, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Pang, S.; Yang, X.; Tian, J. Signal Timing of Intersections Using Integrated Optimization of Traffic Quality, Emissions and Fuel Consumption: A Note. Transp. Res. Part D. 2004, 9, 401–407. [Google Scholar] [CrossRef]
- Liao, T.; Machemehl, R. Optimal Traffic Signal Strategy for Fuel Consumption and Emissions Control at Signalized Intersections. In Proceedings of the 24th European Transport Forum, Brunel University, London, UK, 2–6 September 1996. [Google Scholar]
- Park, B.; Yun, I.; Ahn, K. Stochastic Optimization of Sustainable Traffic Signal Control. Int. J. Sustain. Transp. 2009, 3, 263–284. [Google Scholar] [CrossRef]
- Stevanovic, A.; Stevanovic, J.; Zhang, K.; Batterman, S. Optimizing Traffic Control to Reduce Fuel Consumption and Vehicular Emissions: Integrated Approach with VISSIM, CMEM, and VISGAOST. J. Transp. Res. Board. 2009, 2128, 105–113. [Google Scholar] [CrossRef]
- Madireddy, M.; Coensel, B.D.; Can, A.; Degraeuwe, B.; Beusen, B.; Vlieger, I.D.; Botteldooren, D. Assessment of the Impact of Speed Limit Reduction and Traffic Signal Coordination on Vehicle Emissions Using an Integrated Approach. Transp. Res. Part D 2011, 16, 504–508. [Google Scholar] [CrossRef]
- Kwak, J.; Park, B.; Lee, J. Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel consumption. Transp. Plan. Technol. 2012, 35, 145–160. [Google Scholar] [CrossRef]
- Ding, S.; Chen, X.; Yu, L.; Wang, X. Arterial Offset Optimization Considering the Delay and Emission of Platoon: A Case Study in Beijing. Sustainability 2019, 11, 3882. [Google Scholar] [CrossRef]
- Webster, F.V. Traffic Signal Settings; Rord Research Laboratory Technical Paper; HMSO: London, UK, 1958; p. 39.
- Zhu, M.H. Research and Effect Evaluation on Green Wave Coordinated Control of Urban Arterial Roads. Master’S Thesis, Beijing University of Technology, Beijing, China, 2016. [Google Scholar]
- Xu, H.; Zhuo, Z.; Chen, J.; Fang, X. Traffic signal coordination control along oversaturated two-way arterials. Peer J. Comput. Sci. 2020, 6, e319. [Google Scholar] [CrossRef]
- Zhu, J.; Easa, S.; Gao, K. Merging control strategies of connected and autonomous vehicles at freeway on-ramps: A Comprehensive review. J. Intell. Connect. Veh. 2022, 5, 99–111. [Google Scholar] [CrossRef]
- Xue, Q.; Xing, Y.; Gao, K.; Lu, J.; Qu, X. A Context-Aware Framework for Risky Driving Behavior Evaluation Based on Trajectory Data. IEEE Intell. Transp. Syst. Mag. 2021, 12, 2–15. [Google Scholar] [CrossRef]
Notation | Unit | Description |
---|---|---|
) | s | The outbound (inbound) green wave bandwidth between intersection Ii and intersection Ii+1 |
) | s | The outbound (inbound) straight green time at intersection Ii under the overlapping phase pattern |
) | s | The outbound (inbound) left-turn green time in the overlapping phase pattern at intersection Ii |
) | s | The outbound (inbound) green time in the split phase pattern at intersection Ii |
) | s | The green time of uncoordinated phase 1 (uncoordinated phase 2) at intersection Ii in split phase pattern |
mi,i+1 | - | An integer variable, representing an integer multiple of the signal period |
n | Number of intersections on the arterial road | |
) | s | The outbound (inbound) straight red time at intersection Ii under the overlapping phase pattern |
) | s | The outbound (inbound) red time in the split phase pattern at intersection Ii |
) | s | The red time of uncoordinated phase 1 (uncoordinated phase 2) at intersection Ii in split phase pattern |
) | s | The outbound (inbound) travel time from the intersection Ii (Ii+1) to the intersection Ii+1 (Ii) |
) | s | and the right (left) edge of the adjacent red time at intersection Ii |
) | s | and the right (left) edge of the adjacent red time at intersection Ii+1 |
xi, xi′ | - | 0–1 variable. xi represents overlapping phase pattern, xi′ represents split phase pattern |
) | s | The initial queue clearing time at intersection Ii when the vehicle is in outbound (inbound) direction |
) | s | The time interval between the midpoint of the outbound (inbound) red time at intersection Ii and the midpoint of the outbound (inbound) red time at intersection Ii+1 |
Δdi (Δsi) | s | The time interval between the midpoint of the outbound red time and the midpoint of the closest inbound red time in the overlapping phase pattern (split phase pattern). If the midpoint of the outbound red time is to the right of the midpoint of the inbound red time, take a positive value |
δi1, δi2, δi3, δi4, δi5 | - | 0–1 variable. δi1, δi2 are binary variables in the overlapping phase pattern; δi3, δi4, δi5 are binary variables in the split phase pattern |
Phase Sequence | Δdi(Δsi) | δi1 | δi2 | δi3 | δi4 | δi5 | Note |
---|---|---|---|---|---|---|---|
1 | ) | 0 | 0 | ||||
2 | ) | 1 | 1 | ||||
3 | ) | 0 | 1 | ||||
4 | 1 | 0 | |||||
5 | ) | 0 | 1 | 0 | ) + gsi2 ≤ 0.5 OR ) + gsi1 ≤ 0.5 | ||
6 | |||||||
7 | ) + gsi2 | 1 | 0 | 1 | ) + gsi2 ≤ 0.5 | ||
) − gsi1 | 0 | 1 | 1 | ) + gsi1 ≤ 0.5 | |||
8 | ) − gsi2 | 0 | 1 | 1 | ) + gsi2 ≤ 0.5 | ||
)+ gsi1 | 1 | 0 | 1 | ) + gsi1 ≤ 0.5 | |||
9 | ) | 1 | 0 | 0 | ) + gsi2 ≤ 0.5 OR ) + gsi1 ≤ 0.5 | ||
10 |
Intersection | South | North | East | West | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Left | Straight | Right | Left | Straight | Right | Left | Straight | Right | Left | Straight | Right | |
I1 | 134 | 526 | 60 | 174 | 576 | 46 | 239 | 276 | 133 | 91 | 299 | 125 |
Sum | 720 | 796 | 648 | 515 | ||||||||
I2 | 209 | 441 | 75 | 214 | 637 | 89 | 284 | 421 | 38 | 241 | 396 | 45 |
Sum | 725 | 940 | 743 | 682 | ||||||||
I3 | 700 | 18 | 69 | 897 | 113 | 25 | ||||||
Sum | 718 | 966 | 138 | |||||||||
I4 | 265 | 558 | 81 | 186 | 762 | 62 | 124 | 338 | 34 | 126 | 201 | 41 |
Sum | 904 | 1010 | 496 | 368 | ||||||||
I5 | 283 | 622 | 30 | 121 | 770 | 36 | 192 | 639 | 50 | 232 | 543 | 67 |
Sum | 935 | 927 | 881 | 842 | ||||||||
I6 | 881 | 125 | 273 | 756 | 262 | 54 | ||||||
Sum | 1006 | 1029 | 316 |
Outbound | Inbound | ||
---|---|---|---|
Road Section | Average Travel Speed (km/h) | Road Section | Average Travel Speed (km/h) |
I1-I2 | 27 | I2-I1 | 26 |
I2-I3 | 33 | I3-I2 | 15 |
I3-I4 | 37 | I4-I3 | 27 |
I4-I5 | 33 | I5-I4 | 32 |
I5-I6 | 15 | I6-I5 | 20 |
Average travel speed | 29.1 | Average travel speed | 23.9 |
Intersection | East | West | South | North | ||||
---|---|---|---|---|---|---|---|---|
Left | Straight | Left | Straight | Left | Straight | Left | Straight | |
I1 | 0.32788 | 0.19826 | 0.32788 | 0.19826 | 0.08943 | 0.35607 | 0.11779 | 0.38442 |
I2 | 0.28277 | 0.20260 | 0.28277 | 0.20260 | 0.12714 | 0.34650 | 0.16814 | 0.38750 |
I3 | 0.20675 | - | - | - | - | 0.72207 | 0.06479 | 0.79325 |
I4 | 0.18366 | 0.24633 | 0.18366 | 0.24633 | 0.14708 | 0.42751 | 0.14250 | 0.42293 |
I5 | 0.14885 | 0.34258 | 0.14885 | 0.34258 | 0.13668 | 0.42575 | 0.08282 | 0.37189 |
I6 | 0.31995 | - | - | - | - | 0.51917 | 0.16088 | 0.68005 |
Intersection | East | West | South | North | ||||
---|---|---|---|---|---|---|---|---|
Left | Straight | Left | Straight | Left | Straight | Left | Straight | |
I1 | 0.22727 | 0.22727 | 0.13636 | 0.13636 | 0.30682 | 0.30682 | 0.32955 | 0.32955 |
I2 | 0.20455 | 0.20455 | 0.19318 | 0.19318 | 0.27273 | 0.27273 | 0.32955 | 0.32955 |
I3 | 0.10227 | - | - | - | - | 0.38636 | 0.51136 | 0.51136 |
I4 | 0.26136 | 0.26136 | 0.19318 | 0.19318 | 0.26136 | 0.26136 | 0.28409 | 0.28409 |
I5 | 0.18182 | 0.18182 | 0.29545 | 0.29545 | 0.26136 | 0.26136 | 0.26136 | 0.26136 |
I6 | 0.17045 | - | - | - | - | 0.40909 | 0.42045 | 0.42045 |
Number | Model | b1 | b2 | b3 | b4 | b5 | ∑ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | MULTIBAND | 25 | 13 | 16 | 6 | 37 | 38 | 32 | 31 | 33 | 4 | 235 |
2 | Improved MULTIBAND | 31 | 0 | 34 | 23 | 35 | 34 | 31 | 33 | 30 | 26 | 277 |
3 | AM–BAND | 31 | 8 | 34 | 27 | 37 | 38 | 28 | 29 | 33 | 17 | 282 |
4 | PBAND | 26 | 23 | 32 | 30 | 32 | 38 | 29 | 33 | 31 | 25 | 299 |
5 | AM–BAND–PBAND | 26 | 23 | 34 | 30 | 37 | 38 | 33 | 37 | 30 | 26 | 314 |
Number | Model | Improvement Rate of Average Number of Stops | Improvement Rate of Average Travel Speed | Improvement Rate of Average Travel Time | Improvement Rate of Average Delay Time | Comprehensive Index | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Outbound | Inbound | Outbound | Inbound | Outbound | Inbound | Outbound | Inbound | Outbound | Inbound | ||
1 | MULTIBAND | 3.7% | 8.8% | 5.8% | 8.5% | 13.6% | 24.0% | 10.9% | 25.3% | 9.9% | 20.0% |
2 | Improved MULTIBAND | 12.8% | 34.0% | 5.8% | 13.7% | 13.4% | 35.8% | 13.4% | 37.0% | 11.6% | 30.7% |
3 | AM-BAND | 18.2% | 29.7% | 5.3% | 12.0% | 12.4% | 32.3% | 11.1% | 32.5% | 10.6% | 27.1% |
4 | PBAND | 12.5% | 37.3% | 7.4% | 13.5% | 16.9% | 35.4% | 14.2% | 32.6% | 13.0% | 29.3% |
5 | AM-BAND-PBAND | 16% | 43.7% | 7.9% | 16.1% | 17.9% | 40.7% | 15.6% | 36.0% | 14.3% | 32.8% |
Number | Model | CO (g) | NOX (g) | VOX (g) | Fuel Consumption (US Liquid Gallon) |
---|---|---|---|---|---|
0 | Current | 16,914.7 | 3291.0 | 3920.2 | 242.0 |
1 | MULTIBAND | 13,893.6 | 2703.2 | 3220.0 | 198.8 |
2 | Improved MULTIBAND | 13,727.4 | 2670.9 | 3181.5 | 196.4 |
3 | AM-BAND | 14,164.5 | 2755.9 | 3282.8 | 202.6 |
4 | PBAND | 14,084.5 | 2740.3 | 3264.2 | 201.5 |
5 | AM-BAND-PBAND | 13,886.5 | 2701.8 | 3218.3 | 198.7 |
Traffic Flow Coefficient | AM–BAND | PBAND | AM–BAND–PBAND | |||
---|---|---|---|---|---|---|
Outbound | Inbound | Outbound | Inbound | Outbound | Inbound | |
0.4 | 68.4 | 95.2 | 62.0 | 71.9 | 60.7 | 74.9 |
0.5 | 75.8 | 99.9 | 68.4 | 73.8 | 66.8 | 80.1 |
0.6 | 79.9 | 101.7 | 72.5 | 79.3 | 70.1 | 77.5 |
0.8 | 88.6 | 99.3 | 79.0 | 84.3 | 77.8 | 83.4 |
1 | 98.8 | 95.2 | 89.4 | 94.8 | 85.1 | 84.5 |
1.1 | 90.5 | 104.8 | 91.4 | 92.0 | 87.5 | 88.7 |
1.2 | 102.9 | 100.4 | 94.5 | 92.5 | 92.3 | 95.9 |
1.4 | 107.8 | 106.9 | 101.9 | 97.9 | 101.6 | 99.3 |
1.6 | 112.7 | 108.4 | 108.7 | 100.9 | 109.1 | 104.7 |
Traffic Flow Coefficient | AM–BAND | PBAND | AM–BAND–PBAND | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO (g) | NOX (g) | VOX (g) | Fuel Consumption (US Liquid Gallon) | CO (g) | NOX (g) | VOX (g) | Fuel Consumption (US Liquid Gallon) | CO (g) | NOX (g) | VOX (g) | Fuel Consumption (US Liquid Gallon) | |
0.4 | 5396.5 | 1050.0 | 1250.7 | 77.2 | 5325.0 | 1036.0 | 1234.1 | 76.2 | 5268.2 | 1025.0 | 1220.9 | 75.4 |
0.5 | 6802.5 | 1323.5 | 1576.6 | 97.3 | 6693.7 | 1302.3 | 1551.3 | 95.8 | 6603.4 | 1284.8 | 1530.4 | 94.5 |
0.6 | 8174.4 | 1590.4 | 1894.5 | 116.9 | 8032.3 | 1562.8 | 1861.6 | 114.9 | 7923.6 | 1541.7 | 1836.4 | 113.4 |
0.8 | 11,009.1 | 2142.0 | 2551.5 | 157.5 | 10,790.0 | 2099.3 | 2500.7 | 154.4 | 10,625.1 | 2067.3 | 2462.5 | 152.0 |
1 | 14,164.5 | 2755.9 | 3282.8 | 202.6 | 14,084.5 | 2740.3 | 3264.2 | 201.5 | 13,886.5 | 2701.8 | 3218.3 | 198.7 |
1.1 | 16,566.9 | 3223.3 | 3839.5 | 237.0 | 16,450.4 | 3200.6 | 3812.5 | 235.3 | 16,234.0 | 3158.5 | 3762.4 | 232.2 |
1.2 | 18,964.4 | 3689.8 | 4395.2 | 271.3 | 19,581.7 | 3809.9 | 4538.3 | 280.1 | 19,346.7 | 3764.2 | 4483.8 | 276.8 |
1.4 | 23,768.0 | 4624.4 | 5508.5 | 340.0 | 24,719.2 | 4809.5 | 5728.9 | 353.6 | 24,461.6 | 4759.3 | 5669.2 | 350.0 |
1.6 | 30,405.6 | 5915.8 | 7046.8 | 435.0 | 30,892.0 | 6010.5 | 7159.5 | 441.9 | 30,621.2 | 5957.8 | 7096.8 | 438.1 |
N1 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 5 | ∑ | |
---|---|---|---|---|---|---|---|---|---|---|
N2 | ||||||||||
1 | 178.7 | 178.7 | 175.1 | 173.9 | 174.2 | 179.1 | 175.1 | 173.9 | 1408.6 | |
1.5 | 175.8 | 178.7 | 177.6 | 173.9 | 173.9 | 173.2 | 175.8 | 176.7 | 1405.6 | |
2 | 173.9 | 173.9 | 174.1 | 174.8 | 168.6 | 173.2 | 182.2 | 173.2 | 1393.8 | |
2.5 | 182.5 | 175.1 | 173.9 | 176.7 | 173.9 | 173.2 | 173.9 | 175.1 | 1404.1 | |
3 | 178.7 | 174.1 | 173.9 | 169.7 | 174.6 | 183.9 | 173.9 | 173.2 | 1402.1 | |
4 | 179.3 | 173.9 | 173.2 | 176.7 | 182.3 | 173.2 | 174.8 | 174.6 | 1407.9 | |
5 | 180.4 | 173.9 | 175.3 | 179.6 | 178.7 | 180.9 | 174.1 | 183.2 | 1426.1 | |
6 | 173.9 | 173.9 | 179.1 | 174.1 | 173.2 | 174.8 | 174.2 | 173.9 | 1397.1 | |
∑ | 1423.3 | 1402.2 | 1402.1 | 1399.5 | 1399.3 | 1411.3 | 1404.1 | 1403.7 |
Intersection | South | North | East | West | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Left | Straight | Right | Left | Straight | Right | Left | Straight | Right | Left | Straight | Right | |
I1 | 248 | 244 | 46 | 236 | 256 | 38 | 317 | 554 | 28 | 180 | 662 | 58 |
Sum | 538 | 530 | 898 | 900 | ||||||||
I2 | 277 | 272 | 45 | 265 | 293 | 86 | 228 | 536 | 140 | 244 | 634 | 67 |
Sum | 594 | 643 | 904 | 945 | ||||||||
I3 | 272 | 709 | 84 | 276 | 704 | 96 | 210 | 536 | 124 | 256 | 566 | 121 |
Sum | 1065 | 1076 | 870 | 943 | ||||||||
I4 | 232 | 276 | 141 | 226 | 282 | 40 | 320 | 598 | 140 | 342 | 446 | 114 |
Sum | 649 | 548 | 1058 | 902 | ||||||||
I5 | 272 | 272 | 102 | 270 | 286 | 78 | 334 | 706 | 93 | 244 | 488 | 106 |
Sum | 646 | 634 | 1133 | 838 |
Number | Model | b1 | b2 | b3 | b4 | ∑ | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | MULTIBAND | 29 | 29 | 12 | 13 | 27 | 28 | 15 | 18 | 171 |
2 | Improved MULTIBAND | 33 | 31 | 13 | 12 | 27 | 28 | 27 | 6 | 177 |
3 | AM–BAND | 26 | 19 | 31 | 28 | 29 | 28 | 27 | 29 | 217 |
4 | PBAND | 32 | 31 | 30 | 28 | 29 | 26 | 26 | 31 | 233 |
5 | AM–BAND–PBAND | 34 | 31 | 30 | 28 | 28 | 27 | 27 | 31 | 236 |
Number | Model | CO (g) | NOX (g) | VOX (g) | Fuel Consumption (US Liquid Gallon) |
---|---|---|---|---|---|
1 | MULTIBAND | 20,650.1 | 4017.8 | 4785.9 | 295.4 |
2 | Improved MULTIBAND | 21,792.5 | 4240.0 | 5050.6 | 311.8 |
3 | AM–BAND | 21,859.9 | 4253.1 | 5066.2 | 312.7 |
4 | PBAND | 21,255.4 | 4135.5 | 4926.1 | 304.1 |
5 | AM–BAND–PBAND | 20,043.8 | 3899.8 | 4645.3 | 286.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Luo, D.; Liu, B.; Zhang, X.; Liu, Z.; Li, M. Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model. Sustainability 2022, 14, 10065. https://doi.org/10.3390/su141610065
Li M, Luo D, Liu B, Zhang X, Liu Z, Li M. Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model. Sustainability. 2022; 14(16):10065. https://doi.org/10.3390/su141610065
Chicago/Turabian StyleLi, Min, Dijia Luo, Bilong Liu, Xilong Zhang, Zhen Liu, and Mengshan Li. 2022. "Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model" Sustainability 14, no. 16: 10065. https://doi.org/10.3390/su141610065
APA StyleLi, M., Luo, D., Liu, B., Zhang, X., Liu, Z., & Li, M. (2022). Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model. Sustainability, 14(16), 10065. https://doi.org/10.3390/su141610065