Exchange Rates, Optimization of Industrial Resources Allocation Efficiency, and Environmental Pollution: Evidence from China Manufacturing
<p>Annual average of industry productivity dispersion and real effective exchange rate of RMB.</p> "> Figure 2
<p>Productivity dispersion in low and high-pollution industries.</p> "> Figure 3
<p>Export share and import share of low and high-pollution industries in different years.</p> "> Figure 4
<p>The export intensity and import intensity of low and high-pollution industries in different years.</p> "> Figure 5
<p>The net exposure of low and high-pollution industries in different years.</p> "> Figure 6
<p>Export intensity and import intensity in high and low polluting industries at different productivity levels.</p> "> Figure 7
<p>Net trade exposure of high and low polluting industries at different productivity levels.</p> "> Figure 8
<p>Import penetration in high and low-pollution industries at different productivity levels.</p> ">
Abstract
:1. Introduction
2. Review of the Literature
3. Data Description and Variable Measurement
3.1. Firm-Level Production Data
3.2. Country-Level and Industry-Level Data
3.3. Variable Measurement
3.4. Distribution of Companies in Industries with Different Pollution Levels
4. Regression Model and Results
4.1. Regression Model
4.2. Regression Results
4.3. Robustness Tests
4.4. Exit and Entry of Companies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shapiro, J.S.; Walker, R. Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade. Am. Econ. Rev. 2018, 108, 3814–3854. [Google Scholar] [CrossRef] [Green Version]
- Yang, L. Environmental Issues in an Open Economy: A Survey. Econ. Res. J. 2012, 2, 146–158. [Google Scholar]
- Tomlin, B.; Fung, L. Exchange Rate Movements and the Distribution of Productivity. Rev. Int. Econ. 2015, 23, 782–809. [Google Scholar] [CrossRef]
- Halpern, L.X.; Szl, X.; Koren, M.X.; Szeidl, A. Imported Inputs and Productivity. Am. Econ. Rev. 2015, 105, 3660–3703. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, N.; Sivadasan, J. Capital Resalability, Productivity Dispersion, and Market Strucure. Rev. Econ. Stat. 2009, 91, 547–557. [Google Scholar] [CrossRef]
- Hsieh, C.; Klenow, P.J. Misallocation and Manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef] [Green Version]
- Bils, M.; Klenow, P.J.; Ruane, C. Misallocation or Mismeasurement? J. Monet. Econ. 2021, 124, S39–S56. [Google Scholar] [CrossRef]
- Foster, L. Measuring Business Innovation Using a Multi-Dimensional Approach. NBER Chapters 2020, 1, 123–165. [Google Scholar]
- Bento, P.; Restuccia, D. Misallocation, Establishment Size, and Productivity. Am. Econ. Journal. Macroecon. 2017, 9, 267–303. [Google Scholar] [CrossRef] [Green Version]
- Hopenhayn, H.A. Firms, Misallocation, and Aggregate Productivity: A Review. Annu. Rev. Econ. 2014, 6, 735–770. [Google Scholar] [CrossRef]
- Syverson, C. Market Structure and Productivity: A Concrete Example. J. Polit. Econ. 2004, 112, 1181–1222. [Google Scholar] [CrossRef] [Green Version]
- Syverson, C. Product Substitutability and Productivity Dispersion. Rev. Econ. Stat. 2004, 86, 534–550. [Google Scholar] [CrossRef] [Green Version]
- Robison, H.D. Industrial Pollution Abatement: The Impact on Balance of Trade. Can. J. Econ. Rev. Can. D’economique 1988, 21, 187–199. [Google Scholar] [CrossRef]
- Lucas, R.E.B.; Wheeler, D.; Hettige, H. Economic development, environmental regulation, and the international migration of toxic industrial pollution: 1960-88. Policy Res. Work. Pap. Ser. 1992, 2007, 13–18. [Google Scholar]
- Mani, M.; Wheeler, D. In Search of Pollution Havens? Dirty Industry in the World Economy, 1960 to 1995. J. Environ. Dev. 1998, 7, 215–247. [Google Scholar] [CrossRef]
- Quiroga, M. Have Countries with Lax Environmental Regulations a Comparative Advantage in Polluting Industries? Work. Pap. 2009, 1, 1–38. [Google Scholar]
- Dengke, C. Trade Barrier R eduction and Environmental Pollution Improvement: New Evidence from Firm-level Pollution Data in China. Econ. Res. J. 2020, 55, 98–114. [Google Scholar]
- Xiaoping, L.; Xianxian, L. International Trade, Pollution Industry Transfer and Chinese Industries’ CO2 Emissions. Econ. Res. J. 2009, 45, 15–26. [Google Scholar]
- Pingfang, Z.; Zhengyu, Z.; Guolin, J. Empirical Study of the Relationship between FDI and Environmental Regulation: An Intergovernmental Competition Perspective. Econ. Res. J. 2011, 46, 133–145. [Google Scholar]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Ambec, S.; Barla, P. A theoretical foundation of the Porter hypothesis. Econ. Lett. 2002, 75, 355–360. [Google Scholar] [CrossRef]
- Ekholm, K.; Moxnes, A.; Ulltveit-Moe, K.H. Manufacturing restructuring and the role of real exchange rate shocks. J. Int. Econ. 2012, 86, 101–117. [Google Scholar] [CrossRef]
- Dai, M.; Xu, J. Firm-specific exchange rate shocks and employment adjustment: Evidence from China. J. Int. Econ. 2017, 108, 54–66. [Google Scholar] [CrossRef]
- Berman, N.; Martin, P.; Mayer, T. How do Different Exporters React to Exchange Rate Changes? Q. J. Econ. 2012, 127, 437–492. [Google Scholar] [CrossRef]
- Li, H.; Ma, H.; Xu, Y. How do exchange rate movements affect Chinese exports?—A firm-level investigation. J. Int. Econ. 2015, 97, 148–161. [Google Scholar] [CrossRef]
- Bernard, A.B.; Eaton, J.; Jensen, J.B.; Kortum, S. Plants and Productivity in International Trade. Am. Econ. Rev. 2003, 93, 1268–1290. [Google Scholar] [CrossRef] [Green Version]
- Amiti, M.; Konings, J. Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia. Am. Econ. Rev. 2007, 97, 1611–1638. [Google Scholar] [CrossRef]
- Muendler, M.A. Trade, Technology, and Productivity: A Study of Brazilian Manufacturers, 1986-1998. CESifo Group Munich 2004, 1, 1–53. [Google Scholar] [CrossRef]
- Topalova, P.; Khandelwal, A. Trade Liberalization and Firm Productivity: The case of India. Rev. Econ. Stat. 2011, 93, 995–1009. [Google Scholar] [CrossRef]
- Brandt, L.; Van Biesebroeck, J.; Wang, L.; Zhang, Y. WTO Accession and Performance of Chinese Manufacturing Firms. Am. Econ. Rev. 2017, 107, 2784–2820. [Google Scholar] [CrossRef] [Green Version]
- Arkolakis, C.; Costinot, A.; Donaldson, D.; Rodríguez-Clare, A. The Elusive Pro-Competitive Effects of Trade. Rev. Econ. Stud. 2019, 86, 46–80. [Google Scholar]
- Melitz, M.J. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef] [Green Version]
- Pavcnik, N. Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants. Rev. Econ. Stud. 2002, 69, 245–276. [Google Scholar] [CrossRef] [Green Version]
- Jingwen, Y. Exchange Rate Shock and Productivity at Firm Level: Exchange Rate Shock and Productivity at Firm Level: Analysis from the Perspective of Market Competition Mechanism. Stat. Res. 2018, 35, 75–84. [Google Scholar]
- Foster, L.; Grim, C.; Haltiwanger, J.C.; Wolf, Z. Innovation, Productivity Dispersion, and Productivity Growth. Natl. Bur. Econ. Res. 2019, 1, 1–42. [Google Scholar]
- Brandt, L.; Biesebroeck, J.V.; Zhang, Y. Creative Accounting or Creative Destruction? Firm-level Productivity Growth in Chinese Manufacturing. J. Dev. Econ. 2012, 97, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Olley, G.S.; Pakes, A. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 1996, 64, 1263. [Google Scholar] [CrossRef]
- Xi, Y.; Tang, H.; Wei, X. The Impact of Economic Policy Uncertainty Fluctuation on China’s Export Sophistication:An Empirical Study Based on CEPII-BACI Database. Macroeconomics 2019, 49, 1658–1684. [Google Scholar]
- Disdier, A.X.; Lia, J.; Fontagn, X.; Lionel, L.; Cadot, O. North-South Standards Harmonization and International Trade. World Bank Econ. Rev. 2015, 29, 327–352. [Google Scholar] [CrossRef]
- Wei, S.; Xie, Z.; Zhang, X. Progress and Challenges; Song, L., Garnaut, R., Fang, C., Johnston, L., Eds.; ANU Press: Acton, Australia, 2017; Volume 2, pp. 173–212. [Google Scholar]
- Porteous, O. An Estimated Dynamic Model of African Agricultural Storage and Trade. Am. Econ. J. Appl. Econ. 2019, 11, 327–366. [Google Scholar] [CrossRef] [Green Version]
- Lei-lei, L.; Dan, S. Local Environmental Legislation and Optimization of Industrial Resources. Allocation Efficiency in China’s Manufacturing Industry. China Ind. Econ. 2018, 7, 136–154. [Google Scholar]
- Alfaro, L.; Cuñat, A.; Fadinger, H.; Liu, Y. The Real Exchange Rate, Innovation and Productivity: Heterogeneity, Asymmetries and Hysteresis; National Bureau of Economic Research Working: Cambridge, MA, USA, 2018; pp. 1–72. [Google Scholar]
- Corsetti, G.; Dedola, L.; Leduc, S. The international dimension of productivity and demand shocks in the U.S. economy. J. Eur. Econ. Assoc. 2009, 12, 153–176. [Google Scholar] [CrossRef]
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
rer | 0.835 *** | 0.829 *** | 0.161 *** | 0.143 *** | 0.14 *** |
lngdp | 0.069 *** | 0.131 *** | 0.139 *** | ||
china_gdp | −0.825 *** | −0.702 *** | −0.564 *** | ||
tariff | 0.004 *** | 0.003 *** | |||
any_fdi | −0.001 | 0.002 | |||
scale | −0.039 *** | ||||
state_share | 0.132 *** | ||||
foreign_share | −0.042 |
Variables | (1) | (2) | (3) |
---|---|---|---|
rer | 0.965 *** | 0.317 *** | 0.272 *** |
rer *pollute | −5.034 *** | −6.198 *** | −4.953 *** |
tfp | 3.803 *** | 0.412 *** | |
lngdp | 0.076 *** | 0.136 *** | |
china_gdp | −0.829 *** | −0.599 *** | |
lntariff | 0.004 *** | ||
tariff_output | 0.003 *** | ||
any_fdi | 0.004 | ||
tariff_input | 0.004 ** | ||
scale | −0.042 *** | ||
state | 0.134 *** | ||
foreign | −0.039 |
Variables | (1) | (2) | (3) |
---|---|---|---|
rer | 1.097 *** | 0.427 *** | 0.383 *** |
rer *pollute | −0.579 *** | −0.603 *** | −0.525 *** |
tfp | 3.732 *** | 2.626 *** | |
lngdp | 0.041 *** | 0.103 *** | |
china_gdp | −0.808 *** | −0.586 *** | |
lntariff | −0.010 | ||
tariff_output | 0.003 *** | ||
any_fdi | 0.001 | ||
tariff_input | 0.004 ** | ||
scale | −0.046 *** | ||
state | 0.133 *** | ||
foreign | −0.034 |
Variables | (1) | (2) | (3) |
---|---|---|---|
rer | 0.735 *** | 0.257 *** | 0.227 *** |
rer *pollutdt | −4.951 *** | −5.76 *** | −4.683 *** |
tfp | −0.171 | −1.486 *** | |
lngdp | 0.025 *** | 0.078 *** | |
china_gdp | −0.102 *** | 0.164 *** | |
lntariff | 0.003 ** | ||
tariff_output | 0.002 *** | ||
any_fdi | 0.009 | ||
tariff_input | 0.005 * | ||
scale | −0.069 *** | ||
state | 0.235 *** | ||
foreign | −0.01 |
Variables | (1) | (2) | (3) |
---|---|---|---|
rer | 0.828 *** | 0.348 *** | 0.325 *** |
high_pollute#c.rer | −0.492 *** | −0.538 *** | −0.484 *** |
tfp | −0.234 *** | −1.533 *** | |
lngdp | −0.007 *** | 0.049 *** | |
china_gdp | −0.083 | 0.176 | |
lntariff | 0.001 *** | ||
tariff_output | 0.002 *** | ||
fdi | 0.007 | ||
tariff_input | 0.005 | ||
scale | −0.073 *** | ||
state | 0.234 * | ||
foreign | −0.006 |
Variables | High | Low | ||||
---|---|---|---|---|---|---|
LPM | Probit | Logit | LPM | Probit | Logit | |
rer | −0.01 | −0.1 | −0.19 | 0.21 *** | 1.3 *** | 2.21 *** |
20.percentile#c.rer | 0 | −0.12 | −0.25 | −0.05 | −0.45 | −0.71 |
30.percentile#c.rer | 0.01 | −0.05 | −0.09 | −0.12 *** | −0.94 *** | −1.58 *** |
40.percentile#c.rer | −0.01 | −0.21 | −0.36 | −0.1 ** | −0.5 * | −0.64 |
50.percentile#c.rer | −0.02 | −0.27 | −0.46 | −0.19 *** | −1.02 *** | −1.65 *** |
60.percentile#c.rer | −0.08 ** | −0.62 *** | −1.13 ** | −0.15 *** | −0.95 *** | −1.57 *** |
70.percentile#c.rer | −0.07 * | −0.46 ** | −0.82 * | −0.14 *** | −0.78 *** | −1.2 ** |
80.percentile#c.rer | −0.02 | −0.14 | −0.19 | −0.16 *** | −0.82 *** | −1.31 ** |
90.percentile#c.rer | −0.12 *** | −0.63 *** | −1.09 ** | −0.18 *** | −1.01 *** | −1.62 *** |
100.percentile#c.rer | −0.13 *** | −0.73 *** | −1.27 *** | −0.16 *** | −0.73 *** | −1.13 ** |
Variables | High | Low | ||||
---|---|---|---|---|---|---|
LPM | Probit | Logit | LPM | Probit | Logit | |
rer | −0.43 *** | −1.27 *** | −2.06 *** | −0.64 *** | −2.01 *** | −3.33 *** |
20.percentile#c.rer | 0.26 *** | 0.7 *** | 1.14 *** | −0.02 | −0.12 | −0.27 |
30.percentile#c.rer | 0.36 *** | 1.01 *** | 1.62 *** | 0.14 *** | 0.4 *** | 0.63 ** |
40.percentile#c.rer | 0.41 *** | 1.15 *** | 1.89 *** | 0.15 *** | 0.46 *** | 0.71 *** |
50.percentile#c.rer | 0.47 *** | 1.36 *** | 2.21 *** | 0.28 *** | 0.9 *** | 1.41 *** |
60.percentile#c.rer | 0.54 *** | 1.58 *** | 2.59 *** | 0.41 *** | 1.3 *** | 2.09 *** |
70.percentile#c.rer | 0.59 *** | 1.8 *** | 2.93 *** | 0.37 *** | 1.18 *** | 1.85 *** |
80.percentile#c.rer | 0.69 *** | 2.14 *** | 3.5 *** | 0.4 *** | 1.26 *** | 1.98 *** |
90.percentile#c.rer | 0.66 *** | 2.03 *** | 3.32 *** | 0.52 *** | 1.66 *** | 2.68 *** |
100.percentile#c.rer | 0.68 *** | 2.11 *** | 3.48 *** | 0.54 *** | 1.74 *** | 2.78 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Wu, F. Exchange Rates, Optimization of Industrial Resources Allocation Efficiency, and Environmental Pollution: Evidence from China Manufacturing. Sustainability 2022, 14, 3121. https://doi.org/10.3390/su14053121
Jiang C, Wu F. Exchange Rates, Optimization of Industrial Resources Allocation Efficiency, and Environmental Pollution: Evidence from China Manufacturing. Sustainability. 2022; 14(5):3121. https://doi.org/10.3390/su14053121
Chicago/Turabian StyleJiang, Chun, and Fan Wu. 2022. "Exchange Rates, Optimization of Industrial Resources Allocation Efficiency, and Environmental Pollution: Evidence from China Manufacturing" Sustainability 14, no. 5: 3121. https://doi.org/10.3390/su14053121
APA StyleJiang, C., & Wu, F. (2022). Exchange Rates, Optimization of Industrial Resources Allocation Efficiency, and Environmental Pollution: Evidence from China Manufacturing. Sustainability, 14(5), 3121. https://doi.org/10.3390/su14053121