Short-Term and Medium-Term Drought Forecasting Using Generalized Additive Models
<p>The study area in northeastern South Africa.</p> "> Figure 2
<p>Inter-annual variability of mean rainfall over the study area.</p> "> Figure 3
<p>Inter-annual variability of mean streamflow over the study area.</p> "> Figure 4
<p>Spatial variability of all SPEI timescales considered in this study for the Luvuvhu River Catchment (LRC)—(<b>a</b>) SPEI 1, (<b>b</b>) SPEI 6, (<b>c</b>) SPEI 12.</p> "> Figure 5
<p>Empirical results for timescale (<b>a</b>) SPEI 1 (<b>b</b>) SPEI 6 and (<b>c</b>) SPEI 12.</p> "> Figure 5 Cont.
<p>Empirical results for timescale (<b>a</b>) SPEI 1 (<b>b</b>) SPEI 6 and (<b>c</b>) SPEI 12.</p> "> Figure 6
<p>Generalized Additive Models (GAM), Ensemble Empirical Mode Decomposition (EEMD)-GAM, EEMD-Autoregressive Integrated Moving Average (ARIMA)-GAM, and Forecast Quantile Regression Averaging (fQRA) forecasting model results for (<b>a</b>) SPEI 1, (<b>b</b>) SPEI 6, and (<b>c</b>) SPEI 12 month timescales.</p> "> Figure 7
<p>Scatterplot of the GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA models vs. actual values at all timescales considered in this study—(<b>a</b>) SPEI 1, (<b>b</b>) SPEI 6 and (<b>c</b>) SPEI 12.</p> "> Figure 8
<p>Density plots of actual SPEI times series superimposed with forecasted time series; (<b>a</b>) SPEI 1 vs. GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA; (<b>b</b>) SPEI 6 vs. GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA; (<b>c</b>) SPEI 12 vs. GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA.</p> "> Figure 8 Cont.
<p>Density plots of actual SPEI times series superimposed with forecasted time series; (<b>a</b>) SPEI 1 vs. GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA; (<b>b</b>) SPEI 6 vs. GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA; (<b>c</b>) SPEI 12 vs. GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA.</p> "> Figure 9
<p>95% prediction limits—(<b>a</b>) SPEI 1, (<b>b</b>) SPEI 6 and (<b>c</b>) SPEI 12 month at all timescales considered in the study; LL and UL denote lower limit and upper limit, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Description (LRC) and Datasets
2.2. Formulation of the SPEI for the Study Area
2.3. Drought Trends over North-Eastern South Africa
2.4. SPEI Time Series Forecasting
2.4.1. The Generalized Additive Model without Auto-Correlated Errors
2.4.2. The Generalized Additive Model with Auto-Correlated Errors
3. Results
3.1. Spatial Variability of Drought in the Study Area
3.2. Exploratory Data Analysis
3.3. Variable Selection
3.4. Short- and Medium-Term Forecasting
3.5. Model Performance
3.6. Evaluation of Model Uncertainity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tyson, P.D. Climatic Change Variability in Southern Africa; Oxford University Press: Cape Town, South Africa, 1986; p. 220. [Google Scholar]
- Nicholson, S.E.; Entekhabi, D. Rainfall variability in equatorial and southern Africa: Relationship with seas surface temperatures along the southwestern coast of Africa. J. Clim. Appl. Meteorol. 1987, 26, 561–578. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Fauchereau, N.; Trzaska1, S.; Rouault, M.; Richard, Y. Rainfall Variability and Changes in Southern Africa during the 20th Century in the Global Warming Context. Nat. Hazards 2003, 29, 139–154. [Google Scholar] [CrossRef]
- Ambrosino, C.; Chandler, R.E.; Tod, M.C. Southern African Monthly Rainfall Variability: An Analysis Based on Generalized Linear Models. J. Clim. 2011, 24, 4600–4617. [Google Scholar] [CrossRef]
- Mason, S.J.; Waylen, P.R.; Mimmack, G.M.; Rajaratnam, B.; Harrison, J.M. Changes in Extreme Rainfall Events in South Africa. Clim. Chang. 1999, 41, 249–257. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observation, Modeling and Impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. 2006, 111, D14102. [Google Scholar] [CrossRef]
- Kruger, A.C.; Nxumalo, M.P. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Mosase, E.; Ahlablame, L. Rainfall and temperature in Limpopo River Basin, southern Africa: Means, variation and trends from 1979 to 2015. Water 2018, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Odiyo, J.O.; Makungo, R.; Nkuna, T.R. Long-term changes and variability in rainfall and streamflow in Luvuvhu River Catchment, South Africa. S. Afr. J. Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef]
- Gommes, R. Non-parametric crop yeild forecasting. A didactic case study for Zimbabwe. In Proceedings of the ISPRS Archives XXXVI-8/W48 Workshop proceedings: Remote sensing support to crop yield forecast and area estimates, Stresa, Italy, 30 November–1 December 2006; pp. 79–84. [Google Scholar]
- Vicente-Serrano, S.M.; Chura, O.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Aguilar, E.; Moran-Tejeda, E.; Trujillo, F.; Martinez, R.; Nieto, J.J. Spatio-temporal variability of droughts in Bolivia. Int. J. Clim. 2014, 35, 3024–3040. [Google Scholar] [CrossRef] [Green Version]
- Rouault, M.; Richard, Y. Intensity and spatial extent of droughts in southern Africa. Geophys. Res. Lett. 2005, 32, L15702. [Google Scholar] [CrossRef]
- Benson, C.; Clay, E. The Impact of Drought on Sub-Saharan African Economies: A Preliminary Examination; Technical Paper No. 401; World Bank: Washington, DC, USA, 1998. [Google Scholar]
- FAO. Drought Impact Mitigation and Prevention in the Limpopo River Basin: A Situation Analysis; Food and Agricultural Organisation: Rome, Italy, 2004; p. 160. [Google Scholar]
- Odiyo, J.; Mathivha, F.I.; Nkuna, T.R.; Makungo, R. Hydrological hazards in Vhembe district in Limpopo Province, South Africa. Jàmbá J. Disaster Risk Stud. 2019, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Association for Rural Advancement (AFRA). Drought Relief and Rural Communities; Special Rep. No. 9; AFRA: Pietermaritzburg, South Africa, 1993. [Google Scholar]
- Department of Environmental Affairs (DEA). South Africa’s 2nd Annual Climate Change Report; DEA: Pretoria, South Africa, 2016.
- Levey, K.M.; Jury, M.R. Composite interseasonal oscillation of convection over southern Africa. J. Clim. 1996, 9, 1910–1920. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Cook, C.; Reason, C.; Hewitson, B. Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region. Clim. Res. 2004, 26, 17–31. [Google Scholar]
- Department of Water Affairs and Forestry (DWAF). Luvuvhu/Letaba Water Management Area: Internal Strategic Perspective; DWAF Report No.P WMA 02/000/00/0304; DWAF: Pretoria, South Africa, 2004.
- Ali, Z.; Hussain, I.; Faisal, M.; Nazir, H.M.; Hussain, T.; Shad, M.Y.; Shoukry, A.M.; Gani, S.H. Forecasting Drought Using Multilayer Perceptron Artificial Neural Network Model. Adv. Meteorol. 2017, 5681308. [Google Scholar] [CrossRef]
- Barua, S.; Ng, A.W.M.; Perera, B.J.C. Drought assessment and forecasting: A case study on the Yarra River catchment in Victoria, Australia. Aust. J. Water Resour. 2012, 15, 95–108. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H.; Soh, Y.W. Drought forecasting: A review of modelling approaches 2007–2017. J. Water Clim. Chang. 2019, 1–29. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R. Drought forecasting using stochastic models. Stoch. Environ. Res. Risk Assess. 2005, 19, 326–339. [Google Scholar] [CrossRef]
- Paulo, A.A.; Pereira, L.S. Stochastic Prediction of drought class transitions. J. Water Resour. Manag. 2008, 22, 1277–1296. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J.; Khalil, B. Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustain. Water Resour. Manag. 2016, 2, 87–101. [Google Scholar]
- M’Marete, C.K. Climate and water resources in the Limpopo Province. In Agriculture as the Cornerstone of the Economy in the Limpopo Province; A study commissioned by the Economic Cluster of the Limpopo Provincial Government under the leadership of the Department of Agriculture; Nesamvuni, A.E., Oni, S.A., Odhiambo, J.J.O., Nthakheni, N.D., Eds.; Limpopo Provincial Government: Polokwane, South Africa, 2003; pp. 1–49. [Google Scholar]
- Mzezewa, J.; Misi, T.; van Rensberg, L.D. Characterisation of rainfall at a semi-arid ecotope in the Limpopo Province (South Africa and its implication for sustainable crop production. Water SA 2010, 36, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Ringler, C. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin. Water 2012, 4, 64–84. [Google Scholar] [CrossRef]
- Chikoore, H. Drought in Southern Africa: Structure, Characteristics and Impacts. Ph.D. Thesis, University of Zululand, Richards Bay, South Africa, 2016. [Google Scholar]
- Mulenga, H.M.; Rouault, M.; Reason, C.J.C. Dry summers over NE South Africa and associated circulation anomalies. Clim. Res. 2003, 25, 29–41. [Google Scholar] [CrossRef]
- Fatichi, S.; Ivanov, V.Y.; Caporali, E. A mechanistic ecohydrological model to investigate complex interactions on cold and warm water-controlled environments: 2. Spatiotemporal analyses. J. Adv. Model. Earth Syst. 2012, 4, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.T.; Reason, C.J.C. Dry spell frequency and their variability over southern Africa. Clim. Res. 2004, 26, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Kabanda, T.A. Climatology of Long Term Drought in the Northern Region of the Limpopo Province of South Africa. Ph.D. Thesis, School of Environmental Sciences, University of Venda, Thohoyandou, South Africa, 2004. [Google Scholar]
- Makarau, A. Intra-Seasonal Oscillatory Modes of the Southern Africa Summer Circulation. Ph.D. Thesis, Department of Oceanography, University of Cape Town, Cape Town, South Africa, 1995. [Google Scholar]
- Wehrens, R.; Buydens, L. Self and Super Organizing Maps in R: The kohonen Package. J. Stat. Softw. 2007, 21, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Lo´pez-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 1998, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; Food and Agriculture Organisation of the United Nation: Rome, Italy, 1998. [Google Scholar]
- Hosking, J.R.M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. J. R. Stat. Soc. (Ser. B) 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with formulas, graphs and mathematical tables; National Bureau of Standards Applied Mathematics Series-55; United States Department of Commerce: Washington, DC, USA, 1965.
- Bezdan, J.; Bezdan, A.; Blagojević, B.; Mesaroš, M.; Pejić, M.; Vranešević, M.; Pavić, D.; Nikolić-Đorić, E. SPEI-Based Approach to Agricultural Drought Monitoring in Vojvodina Region. Water 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.V. Calculation of the Standardised Precipitation-Evaporation Index, Package ‘SPEI’. Available online: http://sac.csic.es/spei (accessed on 15 January 2017).
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Pal, I.; Al-Tabbaa, A. Trends in seasonal precipitation extremes: An indicator of ‘Climate Change’ in Kerala, India. J. Hydrol. 2009, 367, 62–69. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V. Trend analysis of rainfall and temperature data for India. Curr. Sci. (Bangalore) 2012, 102, 37–49. [Google Scholar]
- Nikhil-Raj, P.P.; Azeez, P.A. Trend analysis of rainfall in Bharathapuzha River basin, Kerala, India. Int. J. Clim. 2012, 32, 533–539. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V.; Saharia, M. Analysis of rainfall and temperature trends in north-east India. Int. J. Clim. 2013, 33, 968–978. [Google Scholar] [CrossRef]
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection. Available online: https://cran.rproject.org/web/packages/trend/trend.pdf (accessed on 12 April 2018).
- Wood, S. Generalized Additive Models; Chapman & Hall/CRC: New York, NY, USA, 2006. [Google Scholar]
- Goude, Y.; Nedellec, R.; Kong, N. Local short and middle term electricity load forecasting with semi-parametric additive models. IEEE Trans. Smart Grid 2014, 5, 440–446. [Google Scholar] [CrossRef]
- Wood, S. P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data. Stat. Comput. 2017, 27, 985–989. [Google Scholar] [CrossRef] [Green Version]
- Oztuna, D.; Elhan, A.H.; Tuccar, E. Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turk. J. Med Sci. 2006, 36, 171–176. [Google Scholar]
- Field, A. Discovering statistics using SPSS, 3rd ed.; SAGE Publications Ltd.: London, UK, 2009; p. 822. [Google Scholar]
- Haque, M.; Rahman, A.; Hagare, D.; Chowdhury, R.K. A Comparative Assessment of Variable Selection Methods in Urban Water Demand Forecasting. Water 2018, 10, 419. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, M.; Ratnam, J.; Hanan, N. Woody cover in African savannas: The role of resources, fire and herbivory. Glob. Ecol. Biogeogr. 2008, 17, 236–245. [Google Scholar] [CrossRef]
- Benkachcha, S.; Benhra, J.; El-Hassani, H. Seasonal Time Series Forecasting Models based on Artificial Neural Network. Int. J. Comput. Appl. 2015, 116, 0975–8887. [Google Scholar]
- Taşpınar, F. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models. J. Air Waste Manag. Assoc. 2015, 65, 800–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenton, T.M.; Vasilis Dakos, V.; Bathiany, S.; Scheffer, M. Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep. 2017, 7, 5940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindra, K.; Rattana, P.; Morb, S.; Aggarwalc, A.N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef]
- Sigauke, C.; Nemukula, M.M.; Daniel Maposa, D. Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models. Energies 2018, 11, 2208. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. Water Resource Systems Planning and Management. Chapter 9: Model Sensitivity and Uncertainty Analysis; UNESCO: Paris, France, 2005; pp. 255–287. [Google Scholar]
- Gore, M.; Abiodun, B.J.; Kucharski, F. Understanding the influence of ENSO patterns on drought over southern Africa using SPEEDY. Clim. Dyn. 2020, 54, 307–327. [Google Scholar] [CrossRef]
- Meng, J.; Fan, J.; Ashkenazy, Y.; Bunde, A.; Havlin, S. Forecasting the magnitude and onset of El Niño based on climate network. New J. Phys. 2018, 20, 043036. [Google Scholar] [CrossRef]
Station Name | Station Code | Station Number | Data Span | Data Length | |
---|---|---|---|---|---|
1 | Mukumbani | Muk | 0766715 | 1956–2016 | 60 |
2 | Klein Australie | KA | 0723363 X | 1959–2016 | 57 |
3 | Matiwa | Mat | 0766509 9 | 1959–2016 | 57 |
4 | Nooitgedatch | Nooit | 0723334 X | 1959–2016 | 57 |
5 | Levubu | Lev | 0723485A | 1964–2016 | 54 |
6 | Vondo Bos | VB | 0766596 9 | 1963–2016 | 53 |
7 | Shefera | Shef | 0723182 6 | 1948–2016 | 68 |
8 | Tshivhase | Tshi | 0766628 W | 1986–2016 | 30 |
Station | Timescale | Mild (%) | Moderate (%) | Severe (%) | Extreme (%) |
---|---|---|---|---|---|
KA | 1 | 68.28 | 23.66 | 5.91 | 0.02 |
6 | 63.79 | 27.59 | 8.05 | 0.575 | |
12 | 65.68 | 17.16 | 15.98 | 1.18 | |
Lev | 1 | 65.91 | 22.35 | 2.24 | 0.56 |
6 | 66.67 | 16.67 | 16.67 | 0 | |
12 | 65.66 | 12.65 | 21.69 | 0 | |
Mat | 1 | 67.9 | 26.84 | 5.26 | 0 |
6 | 65.35 | 25.57 | 8.52 | 0.57 | |
12 | 69.14 | 14.2 | 10.49 | 6.14 | |
Muk | 1 | 68.42 | 23.68 | 7.37 | 0.53 |
6 | 65.36 | 25.7 | 6.7 | 2.23 | |
12 | 69.33 | 14.11 | 10.42 | 6.14 | |
Nooit | 1 | 66.86 | 24 | 7.43 | 1.14 |
6 | 63.28 | 25.42 | 10.72 | 0.57 | |
12 | 61.15 | 23.08 | 14.2 | 1.18 | |
Shef | 1 | 68.51 | 21.55 | 7.74 | 2.21 |
6 | 68.36 | 23.72 | 6.21 | 1.7 | |
12 | 70.88 | 21.43 | 6.05 | 1.65 | |
Tshi | 1 | 70.97 | 23.12 | 4.2 | 1.61 |
6 | 68.11 | 21.08 | 10.27 | 0.54 | |
12 | 65.06 | 19.88 | 15.06 | 0 | |
VB | 1 | 71.73 | 19.9 | 6.81 | 1.57 |
6 | 71.51 | 18.99 | 6.7 | 2.79 | |
12 | 71.88 | 15.63 | 6.65 | 6.65 |
Variable | 1-Month Timescale | 6-Month Timescale | 12-Month Timescale |
---|---|---|---|
SPEI | Rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean | Rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean | Non-linear trend, SPEIt−1 |
IMF 1 | SPEI, rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean | SPEI, rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean | SPEI, rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean |
IMF 2 | SPEI, rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean | SPEI, rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean | SPEI, rain, non-linear trend, SPEIt−1 and SPEIt−2, Tmax, Tmin, Tmean |
IMF 3 | Non-linear trend | Non-linear trend | Non-linear trend |
IMF 4 | Non-linear trend | Non-linear trend | Non-linear trend |
IMF 5 | Non-linear trend | Non-linear trend, SPEIt−1 | Non-linear trend, SPEIt−1 |
IMF 6 | Non-linear trend, SPEIt−1 | Non-linear trend, SPEIt−1 | Non-linear trend, SPEIt−1 |
IMF 7 | Non-linear trend, SPEIt−1 and SPEIt−2 | Non-linear trend, SPEIt−1 and SPEIt−2 | Non-linear trend, SPEIt−1 |
Residual | Non-linear trend, SPEIt−1 and SPEIt−2 | Non-linear trend, SPEIt−1 and SPEIt−2 | Non-linear trend, SPEIt−1 and SPEIt−2, SPEI |
Timescale | Model | ME | RMSE | MAE | MPE | MAPE |
---|---|---|---|---|---|---|
1 | GAM | 0.0177 | 0.7676 | 0.6127 | −3.8647 | 231.728 |
EEMD-GAM | 0.6805 | 0.8829 | 0.7410 | −47.4685 | 275.233 | |
EEMD-ARIMA-GAM | 0.4718 | 0.481 | 0.4718 | −135.946 | 280.609 | |
fQRA | −0.0116 | 0.0599 | 0.03369 | 11.971 | 17.099 | |
6 | GAM | −0.0016 | 0.3644 | 0.2694 | 19.774 | 57.438 |
EEMD-GAM | −0.0563 | 0.3818 | 0.2833 | 13.330 | 57.293 | |
EEMD-ARIMA-GAM | −0.0599 | 0.3449 | 0.2595 | 10.227 | 51.763 | |
fQRA | 0.0030 | 0.2609 | 0.2057 | 8.053 | 37.699 | |
12 | GAM | 0.0021 | 0.1809 | 0.1199 | −63.013 | 123.075 |
EEMD-GAM | 0.0067 | 0.1978 | 0.1373 | −128.169 | 181.563 | |
EEMD-ARIMA-GAM | 0.0851 | 0.2221 | 0.162 | −77.719 | 183.636 | |
fQRA | 0.0032 | 0.1811 | 0.1194 | −67.49 | 127.262 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathivha, F.; Sigauke, C.; Chikoore, H.; Odiyo, J. Short-Term and Medium-Term Drought Forecasting Using Generalized Additive Models. Sustainability 2020, 12, 4006. https://doi.org/10.3390/su12104006
Mathivha F, Sigauke C, Chikoore H, Odiyo J. Short-Term and Medium-Term Drought Forecasting Using Generalized Additive Models. Sustainability. 2020; 12(10):4006. https://doi.org/10.3390/su12104006
Chicago/Turabian StyleMathivha, Fhumulani, Caston Sigauke, Hector Chikoore, and John Odiyo. 2020. "Short-Term and Medium-Term Drought Forecasting Using Generalized Additive Models" Sustainability 12, no. 10: 4006. https://doi.org/10.3390/su12104006