Advanced Modulation Formats for 400 Gbps Optical Networks and AI-Based Format Recognition
<p>Architecture of a 4 × 100 Gbps Apol-CRZ-FSK signal transmission system for optical networks.</p> "> Figure 2
<p>Spectral diagram of a 4 × 100 Gbps signals: (<b>a</b>) Apol-CRZ-FSK; (<b>b</b>) CRZ-FSK; (<b>c</b>) DQPSK.</p> "> Figure 3
<p>The relation among SMF length, Q-factor, and launch power for the four wavelength channels of 4 × 100 Gbps Apol-CRZ-FSK signal transmission: (<b>a</b>) first channel; (<b>b</b>) second channel; (<b>c</b>) third channel; (<b>d</b>) last channel.</p> "> Figure 4
<p>The relation among SMF length, Q-factor and launch power for the four wavelength channels of 4 × 100 Gbps CRZ-FSK signal transmission: (<b>a</b>) first channel; (<b>b</b>) second channel; (<b>c</b>) third channel; (<b>d</b>) last channel.</p> "> Figure 5
<p>The relation among SMF length, Q-factor and launch power for the four wavelength channels of 4 × 100 Gbps DQPSK signal transmission: (<b>a</b>) first channel; (<b>b</b>) second channel; (<b>c</b>) third channel; (<b>d</b>) last channel.</p> "> Figure 6
<p>Performance analysis and comparison of three signals in different distances.</p> "> Figure 7
<p>Eye diagrams of the four-channel signals for the three types of signals at the launch power of 6 dBm and transmission distance of 1500 km: (<b>a</b>) first channel; (<b>b</b>) second channel; (<b>c</b>) third channel; (<b>d</b>) last channel.</p> "> Figure 8
<p>Model of the MFI method based on the Inception-ResNet-v2.</p> "> Figure 9
<p>Loss values for training and test sets.</p> "> Figure 10
<p>MFI confusion matrix for training and testing sets: (<b>a</b>) training set output confusion matrix; (<b>b</b>) testing set output confusion matrix.</p> "> Figure 11
<p>Effect of different factors on model MFI: (<b>a</b>) accuracy of the model at different number of rounds; (<b>b</b>) effect of different transmission distances on MFI; (<b>c</b>) effect of different signal-to-noise ratios on MFI.</p> "> Figure 12
<p>Comparative analysis of different modulation format recognition methods: (<b>a</b>) accuracy; (<b>b</b>) precision; (<b>c</b>) recall; (<b>d</b>) F1 score.</p> ">
Abstract
:1. Introduction
1.1. Prior Works for Optical Modulation Technologies
1.2. Prior Works for MFI
1.3. Contribution
2. Materials and Methods
2.1. System Structure and Setup
2.2. Result Analysis
3. AI-Based Modulation Format Recognition
3.1. Format Recognition System Based on Inception-ResNet-v2 Convolutional Neural Network Modeling
3.2. Results and Discussion
3.2.1. Modulation Format Identification Results
3.2.2. Effect of Different Factors on MFI
3.2.3. Comparison with Different Methods
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 6G: The Next Horizon White Paper. Available online: https://www.huawei.com/en/huaweitech/future-technologies/6g-white-paper (accessed on 12 November 2024).
- He, H.; Jiang, L.; Pan, Y.; Yi, A.; Zou, X.; Pan, W.; Willner, A.E.; Fan, X.; He, Z.; Yan, L. Integrated sensing and communication in an optical fibre. Light Sci. Appl. 2023, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Hu, F. Research on novel modulation format Apol-FSK for optical transport network of 5G. Opt. Commun. 2020, 474, 126055. [Google Scholar] [CrossRef]
- Ehsan, E.; Ngah, R.; Daud, N.A.B. A 1.792 Tbps RoF-based PDM-DQPSK DWDM system for high-capacity long-haul 5 G and beyond optical network. Optik 2022, 269, 169858. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X.; Xu, Q.; Yang, J.; Li, Y.; Yang, H. All-optical wavelength and format conversion of DQPSK-to-PAM4 using DLI and pump assisted NOLM. Opt. Fiber Technol. 2023, 81, 103486. [Google Scholar] [CrossRef]
- Sueyoshi, A.; Hisano, D.; Maruta, A.; Mishina, K. Transmission characteristics of all-optically converted QPSK and 16QAM signals. Opt. Commun. 2023, 537, 129432. [Google Scholar] [CrossRef]
- Cao, X.H.; Fan, X.J.; Li, M.; Zhu, N.H.; Li, W. Microwave photonic multi-frequency reconfigurable PSK/ASK/FSK formats modulation signals generation. Opt. Commun. 2023, 550, 129953. [Google Scholar] [CrossRef]
- Gozalpour, F.; Yavari, M. An improved FSK-modulated class-E power and data transmitter for biomedical implants. AEU-Int. J. Electron. Commun. 2023, 170, 154786. [Google Scholar] [CrossRef]
- Sadiq, M.W.; Kabir, M.A. Design and implementation of reconfigurable ASK and FSK modulation and demodulation algorithm on FPGA (Field Programmable Gate Array). Sens. Int. 2022, 3, 100155. [Google Scholar] [CrossRef]
- Shengliang, P.; Shujun, S.; Yu Dong, Y. A Survey of Modulation Classification Using Deep Learning: Signal Representation and Data Preprocessing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7020–7038. [Google Scholar]
- Dgani, B.; Cohen, I. Efficient Cumulant-Based Automatic Modulation Classification Using Machine Learning. Sensors 2024, 24, 701. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Chi, N. Key Technologies of Front-haul Networks for Next Generation Mobile Communications. ZTE Commun. Technol. 2023, 29, 45–55. [Google Scholar]
- Li, H.; Gong, X.; Luo, R. Based on Time-Frequency Fusion, Deep Learning Modulation Recognition Algorithm. Telecommun. Technol. 2024, 64, 22–28. [Google Scholar] [CrossRef]
- Deng, P. Radio Frequency Modulation Format Recognition Based on Deep Learning. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, P.; Dong, C.; Lu, Y.; Chuanqi, L. Intelligent equally weighted multi-task learning for joint OSNR monitoring and modulation format identification. Opt. Fiber Technol. 2022, 71, 102931. [Google Scholar] [CrossRef]
- Lv, H.; Zhou, X.; Huo, J.; Yuan, J. Joint OSNR monitoring and modulation format identification on signal amplitude histograms using convolutional neural network. Opt. Fiber Technol. 2021, 61, 102455. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Allechy, F.B.; Zheng, Z.; Liu, R.; Kouadio, K.L. Machine learning-based techniques for land subsidence simulation in an urban area. J. Environ. Manag. 2024, 352, 120078. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Yang, T.; Chen, X.; Chai, J.; Zhao, Y.; Shi, S. A CNN-based cost-effective modulation format identification scheme by low-bandwidth direct detecting and low rate sampling for elastic optical networks. Opt. Commun. 2020, 471, 126007. [Google Scholar] [CrossRef]
- Yang, L.; Xu, H.; Bai, C.; Yu, X.; You, K.; Sun, W.; Zhang, X.; Liu, C. Low-complexity modulation format identification scheme via graph-theory in digital coherent optical receivers. Opt. Commun. 2021, 501, 127380. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, H.; Bai, C.; Yang, L.; Sun, W.; Yu, X.; Ge, P.; Li, B.; Zhao, R.; Tang, X.; et al. Simultaneous baud rate/modulation format identification and multi-parameter optical performance monitoring using multi-task learning with enhanced picture of Radon transform. Opt. Fiber Technol. 2022, 70, 102873. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Huang, H.; Hu, F.; Gong, J.; Shi, B.; Guo, J.; Peng, X. Advanced Modulation Formats for 400 Gbps Optical Networks and AI-Based Format Recognition. Sensors 2024, 24, 7291. https://doi.org/10.3390/s24227291
He Z, Huang H, Hu F, Gong J, Shi B, Guo J, Peng X. Advanced Modulation Formats for 400 Gbps Optical Networks and AI-Based Format Recognition. Sensors. 2024; 24(22):7291. https://doi.org/10.3390/s24227291
Chicago/Turabian StyleHe, Zhou, Hao Huang, Fanjian Hu, Jiawei Gong, Binghua Shi, Jia Guo, and Xiaoran Peng. 2024. "Advanced Modulation Formats for 400 Gbps Optical Networks and AI-Based Format Recognition" Sensors 24, no. 22: 7291. https://doi.org/10.3390/s24227291