A Combined Sensor Design Applied to Large-Scale Measurement Systems
<p>Schematic diagram of the system measurement model.</p> "> Figure 2
<p>Combined sensor measurement model.</p> "> Figure 3
<p>Schematic diagram of combined sensor modeling.</p> "> Figure 4
<p>Error curves for different numbers of sensing units.</p> "> Figure 5
<p>Pre-stage photoelectric conditioning circuit.</p> "> Figure 6
<p>Band-stop filter circuit.</p> "> Figure 7
<p>Level comparison circuit.</p> "> Figure 8
<p>Test waveforms of analog and pulse signals. (<b>a</b>) Reference signal. (<b>b</b>) Sector signal. (<b>c</b>) Reference pulse signal. (<b>d</b>) Sector pulse signal.</p> "> Figure 9
<p>(<b>a</b>) Photoelectric conditioning circuit board. (<b>b</b>) Physical diagram of the combined sensor.</p> "> Figure 10
<p>Experimental measurement scenario.</p> "> Figure 11
<p>Schematic diagram of measurement points.</p> "> Figure 12
<p>(<b>a</b>) The standard deviation of 500 repeated measurements. (<b>b</b>) Measurement error compared to the laser tracking system.</p> "> Figure 13
<p>Scenarios of experiments on hidden spots and shaped surfaces of aircraft engine hoods.</p> "> Figure 14
<p>Triaxial measurement error at the hidden point of the airplane hood. (<b>a</b>) X-direction. (<b>b</b>) Y-direction. (<b>c</b>) Z-direction.</p> ">
Abstract
:1. Introduction
2. Measurement Model
2.1. Systematic Measurement Model
2.2. Combined Measurement Model
3. Design of Combined Sensors
3.1. Number of Nodes in Simulation
- (1)
- Extract the coordinates of any three characteristic points and the structural parameters di. To simulate real-world measurement scenarios, a random error within the range of 0.2 mm is introduced to the characteristic points during the simulation. The simulation results are then compared with the theoretical value of point A in the model.
- (2)
- To eliminate the impact of position, a combinatorial approach is employed to repeatedly select three points from the twelve characteristic points for simulation analysis. The absolute error in a single direction is calculated, and the average absolute error is used as the calculation error for the given number of sensing units.
- (3)
- Vary the number of characteristic points and repeat the aforementioned steps to sequentially determine the calculation errors for configurations with three to twelve sensing units. The simulation results are illustrated in Figure 4.
3.2. Design of Signal Conditioning Circuits
3.3. Nonlinear Calibration Model
4. Experiment and Discussion
4.1. Point-of-Measurement Experiment
4.2. Distance Measuring Experiment
4.3. Functional Experiments
4.4. Experimental Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, G.; Sun, Y.; Xu, S. Development of an integrated laser sensors based measurement system for large-scale components automated assembly application. IEEE Access 2018, 6, 45646–45654. [Google Scholar] [CrossRef]
- Chen, Z.H.; Du, F.Z. Measuring principle and uncertainty analysis of a large volume measurement network based on the combination of iGPS and portable scanner. Measurement 2017, 104, 263–277. [Google Scholar] [CrossRef]
- Wang, J.; Tao, B.; Gong, Z.; Yu, S.; Yin, Z. A mobile robotic measurement system for large-scale complex components based on optical scanning and visual tracking. Robot. Comput.-Integr. Manuf. 2021, 67, 102010. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Ding, G.; Li, Y.; Xu, W.; Zhao, Q.; Gong, Y.; Song, Q. A lightweight localization strategy for lidar-guided autonomous robots with artificial landmarks. Sensors 2021, 21, 4479. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.S.; Li, Y.H.; Huo, J.; Yang, M.; Wang, Y.; Li, C. A measurement method of motion parameters in aircraft ground tests using computer vision. Measurement 2021, 174, 108985. [Google Scholar] [CrossRef]
- Lee, S.H. An omnidirectional receiver for visible light communication using a flexible solar cell. J. Sens. Sci. Technol. 2017, 26, 173–178. [Google Scholar] [CrossRef]
- Urquhart, K. Photoelectric laser sensors. Manuf. Autom. Mach. Dessig Syst. Technol. 2021, 36, 21. [Google Scholar]
- Shi, S.; Yang, L.; Lin, J.; Long, C.; Deng, R.; Zhang, Z.; Zhu, J. Dynamic measurement error modeling and analysis in a photoelectric scanning measurement network. Appl. Sci. 2018, 9, 62. [Google Scholar] [CrossRef]
- Zhou, N.; An, Z.Y.; Li, L.J.; Zhu, Y. iGPS measurement network multi-station arrangement design. Appl. Mech. Mater. 2014, 443, 223–227. [Google Scholar] [CrossRef]
- Shang, K.D.; Liu, Q.; Jia, K.; Yang, S.; Wang, X.; Zhen, J. ALPS/IMU calibration method based on spatial multipose transformation for large space indoor dynamic positioning. Opt. Eng. 2022, 61, 064103. [Google Scholar] [CrossRef]
- Liu, Q.; Ren, H.S.; Jia, K. Flexible method for improved transmitter parameter calibration in accurate large—Scale positioning system. Opt. Eng. 2019, 58, 0641051–0641059. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Q.; Zhi, Y.; Shang, T. Omnidirectional sensor design for distributed laser measurement systems. Sensors 2024, 24, 961. [Google Scholar] [CrossRef]
- Geetla, T.; Batta, R.; Blatt, A.; Flanigan, M.; Majka, K. Optimal placement of omnidirectional sensors in a transportation network for effective emergency response and crash characterization. Transp. Res. Part C Emerg. Technol. 2014, 45, 64–82. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, J.; Yang, L.; Muelaner, J.; Keogh, P.; Zhu, J. Integrated calibration of a 3D attitude sensor in large-scale metrology. Meas. Sci. Technol. 2017, 28, 075105. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, W.; Wang, Y.; Yue, Y.; Zhang, J. An accurate calibration method of a combined measurement system for large-sized components. Meas. Sci. Technol. 2022, 33, 095013. [Google Scholar] [CrossRef]
- Muralikrishnan, B.; Czapla, B.; Lee, V.; Shakarji, C.; Sawyer, D.; Saure, M. Laser Tracker and Terrestrial Laser Scanner Range Error Evaluation by Stitching. Sensors 2024, 24, 2960. [Google Scholar] [CrossRef]
- Norman, A.R.; Schönberg, A.; Gorlach, I.A.; Schmitt, R. Validation of iGPS as an external measurement system for cooperative robot positioning. Int. J. Adv. Manuf. Technol. 2012, 64, 427–446. [Google Scholar] [CrossRef]
- Xue, B.; Zhu, J.; Yang, L.; Zhao, Z.; Ye, S. The application of the wMPS in airplane level measurement. Opto-Electron. Eng. 2014, 41, 22–26. [Google Scholar]
- Lin, J.; Sun, J.; Yang, L.; Zhang, R.; Ren, Y. Modeling and Optimization of Rotary Laser Surface for Large-Scale Optoelectronic Measurement System. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Yong, S.H.; Ren, H.S.; Kang, S. Research on parameter calibration of multi–node fusion receiver for large space laser scanning measurement system. Laser J. 2020, 41, 26–29. (In Chinese) [Google Scholar]
- Liu, Q.; Yong, S.H.; Ren, H.S.; Kang, S. Study on combined measurement method of laser scanning in large space. Laser J. 2020, 41, 32–39. (In Chinese) [Google Scholar]
Number of Revolutions | Calibration Error /mm | ||||||||
---|---|---|---|---|---|---|---|---|---|
Δd1 | Δd2 | Δd3 | Δd4 | Δd5 | Δd6 | Δd7 | Δd8 | Δd9 | |
2 | 11.457 | 2.374 | 0.249 | 1.328 | −9.573 | 18.375 | 6.735 | 4.268 | 6.747 |
3 | 0.027 | 0.021 | 0.038 | −0.019 | 0.092 | −0.015 | −0.044 | −0.028 | 0.024 |
4 | −0.017 | 0.030 | 0.078 | 0.016 | 0.041 | 0.029 | 0.024 | 0.029 | 0.017 |
5 | −0.024 | −0.135 | 0.017 | 0.021 | 0.064 | 0.015 | 0.011 | −0.017 | −0.009 |
6 | 0.009 | 0.007 | −0.005 | 0.015 | −0.018 | 0.007 | 0.009 | −0.011 | 0.014 |
7 | 0.004 | 0.012 | −0.007 | 0.008 | 0.003 | 0.015 | 0.009 | −0.012 | −0.007 |
8 | 0.013 | 0.009 | −0.008 | −0.012 | 0.007 | 0.012 | 0.0015 | −0.013 | −0.006 |
9 | 0.012 | −0.011 | 0.007 | −0.013 | −0.007 | 0.008 | 0.0013 | 0.014 | −0.009 |
Number | Distributed System/mm | d1/mm | Laser Tracker/mm | d2/mm | Error/mm |
---|---|---|---|---|---|
0 | (3274.40, 2260.15, −632.02) | 0 | (3274.08, 2260.42, −632.19) | 0 | 0 |
1 | (2238.27, 1248.59, −431.21) | 1461.9 | (2238.61, 1248.24, −430.07) | 1462.04 | 0.14 |
2 | (1316.43, 2758.27, −592.18) | 2020.73 | (1316.19, 2758.21, −592.27) | 2020.57 | −0.15 |
3 | (4962.31, 2965.54, 1120.35) | 2533.26 | (4962.14, 2965.72, 1120.43) | 2533.51 | 0.25 |
4 | (4735.34, 1394.65, 546.31) | 2066.86 | (4735.21, 1394.8, 546.12) | 2067.03 | 0.17 |
5 | (961.71, 3598.32, 2236.84) | 3920.41 | (961.42, 3598.5, 2237) | 3920.6 | 0.19 |
6 | (942.68, 1658.43, 1240.52) | 3051.09 | (942.21, 1658.68, 1240.69) | 3050.8 | −0.28 |
7 | (3051.37, 66.78, −2481.39) | 2878.40 | (3051.98, 66.42, −2481.72) | 2878.15 | −0.25 |
8 | (5962.21, 4748.35, −104.63) | 3700.63 | (5962.3, 4748, −104.55) | 3700.4 | −0.23 |
9 | (6333.46, 2102.94, 98.6) | 3149.03 | (6333.42, 2102.4, 98.05) | 3149.25 | 0.22 |
10 | (3574.61, 2201.3, 748.54) | 1414.05 | (3574.38, 2201.43, 748.6) | 1414.3 | 0.24 |
11 | (2963.15, 1483.37, 1836.95) | 2606.93 | (2963.52, 1483.12, 1836.48) | 2606.72 | −0.21 |
12 | (1752.68, 4658.42, 967.75) | 3259.85 | (1752.45, 4658.43, 967.5) | 3259.57 | −0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Ren, H.; Liu, F.; Li, J.; Cheng, P.; Deng, Z. A Combined Sensor Design Applied to Large-Scale Measurement Systems. Sensors 2024, 24, 5848. https://doi.org/10.3390/s24175848
Pan X, Ren H, Liu F, Li J, Cheng P, Deng Z. A Combined Sensor Design Applied to Large-Scale Measurement Systems. Sensors. 2024; 24(17):5848. https://doi.org/10.3390/s24175848
Chicago/Turabian StylePan, Xiao, Huashuai Ren, Fei Liu, Jiapei Li, Pengfei Cheng, and Zhongwen Deng. 2024. "A Combined Sensor Design Applied to Large-Scale Measurement Systems" Sensors 24, no. 17: 5848. https://doi.org/10.3390/s24175848