The Validity of a Dual-Force Plate for Assessing Counter-Movement Jump Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Counter-Movement Jump
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, D.G.E.; Caldwell, G.E.; Hamill, J.; Kamen, G.; Whittlesey, S. Research Methods in Biomechanics; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Fransz, D.P.; Huurnink, A.; Kingma, I.; Verhagen, E.A.L.M.; Van Die, N.J.H. A systematic review and meta-analysis of dynamic tests and related force plate parameters used to evaluate neuromusculoskeletal function in foot and ankle pathology. Clin. Biomech. 2013, 28, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Weldon, A.; Duncan, M.J.; Turner, A.N.; Sampaio, J.; Noon, M.; Wong, D.P.; Lai, V.W. Contemporary practices of strength and conditioning coaches in professional soccer. Termedia Sp. Z O.O. 2021, 38, 377. [Google Scholar] [CrossRef] [PubMed]
- Beckham, G.; Suchomel, T.; Mizuguchi, S. Force Plate Use in Performance Monitoring and Sport Science. Testing 2014, 29, 25–37. [Google Scholar]
- Robles Palazón, F.J.; Comfort, P.; Ripley, N.; Herrington, L.; Bramah, C.; McMahon, J. Force plate methodologies applied to injury profiling and rehabilitation in sport: A scoping review protocol. PLoS ONE 2023, 18, e0292487. [Google Scholar] [CrossRef]
- Peterson Silveira, R.; Stergiou, P.; Carpes, F.; Castro, F.; Katz, L.; Stefanyshyn, D. Validity of a portable force platform for assessing biomechanical parameters in three different tasks. Sports Biomech. 2017, 16, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Badby, A.J.; Mundy, P.D.; Comfort, P.; Lake, J.P.; McMahon, J.J. The Validity of Hawkin Dynamics Wireless Dual Force Plates for Measuring Countermovement Jump and Drop Jump Variables. Sensors 2023, 23, 4820. [Google Scholar] [CrossRef]
- Jason, L.; Peter, M.; Paul, C.; Mcmahon, J.J.; Suchomel, T.J.; Patrick, C. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar]
- Crowder, G.; Pexa, B.; Ford, K.; Waxman, J. The Validation of a Portable Dual-Force Plate System for Assessing Countermovement Jump Performance; American Society of Biomechanics: Atlanta, GA, USA, 2020. [Google Scholar]
- Bishop, D. Warm up II: Performance changes following active warm up and how to structure the warm up. Sports Med. 2003, 33, 483–498. [Google Scholar] [CrossRef]
- O’Grady, M.W.; Young, W.B.; Talpey, S.W.; Behm, D.G. Does the warm-up effect subsequent post activation performance enhancement. J. Sport Exerc. Sci. 2021, 5, 302–309. [Google Scholar]
- Altman, B.D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 2010, 47, 931–936. [Google Scholar]
- Ludbrook, J. Linear regression analysis for comparing two measurers or methods of measurement: But which regression? Clin. Exp. Pharmacol. Physiol. 2010, 37, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Ludbrook, J. Statistical techniques for comparing measurers and methods of measurement: A critical review. Clin. Exp. Pharmacol. Physiol. 2002, 29, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Ludbrook, J. Comparing methods of measurement. Clin. Exp. Pharmacol. Physiol. 1997, 24, 193–203. [Google Scholar] [CrossRef]
- Mullineaux, D.R.; Barnes, C.A.; Batterham, A.M. Assessment of Bias in Comparing Measurements: A Reliability Example. Meas. Phys. Educ. Exerc. Sci. 1999, 3, 195–205. [Google Scholar] [CrossRef]
- Ludbrook, J. A primer for biomedical scientists on how to execute Model II linear regression analysis. Clin. Exp. Pharmacol. Physiol. 2012, 39, 329–335. [Google Scholar] [CrossRef]
- Krzyszkowski, J.; Chowning, L.D.; Harry, J.R. Phase-Specific Predictors of Countermovement Jump Performance That Distinguish Good From Poor Jumpers. J. Strength. Cond. Res. 2020, 36, 1257–1263. [Google Scholar] [CrossRef]
- Mcmahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the Key Phases of the Countermovement Jump Force-Time Curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef]
- Chavda, S.; Bromley, T.; Jarvis, P.; Williams, S.; Bishop, C.; Turner, A.N.; Lake, J.P.; Mundy, P.D. Force-Time Characteristics of the Countermovement Jump: Analyzing the Curve in Excel. Strength Cond. J. 2018, 40, 67–77. [Google Scholar] [CrossRef]
- Owen, N.; Watkins, J.; Kilduff, L.; Bennett, M. Development of a Criterion Method to Determine Peak Mechanical Power Output in a Countermovement Jump. Natl. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef]
- Street, G.; Mcmillan, S.; Board, W.; Rasmussen, M.; Heneghan, J.M. Sources of Error in Determining Countermovement Jump Height With the Impulse Method. J. Appl. Biomech. 2001, 17, 43–54. [Google Scholar] [CrossRef]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- McMahon, J.; Jones, P.; Dos’Santos, T.; Comfort, P. Influence of Dynamic Strength Index on Countermovement Jump Force-, Power-, Velocity-, and Displacement-Time Curves. Sports 2017, 5, 72. [Google Scholar] [CrossRef]
- McMahon, J.; Murphy, S.; Rej, S.; Comfort, P. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. Int. J. Sports Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef]
- McMahon, J.J.; Rej, S.J.; Comfort, P. Sex differences in countermovement jump phase characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef]
- Mundy, P.D.; Lake, J.P.; Carden, P.J.C.; Smith, N.A.; Lauder, M.A. Agreement between the force platform method and the combined method measurements of power output during the loaded countermovement jump. Sports Biomech. 2016, 15, 23–35. [Google Scholar] [CrossRef]
- Lake, J.; Mundy, P.; Comfort, P.; Mcmahon, J.; Carden, P. The Validity of Portable Force Plate Countermovement Vertical Jump Reactive Strength and Force-time Characteristics. In Proceedings of the 40th Annual National Conference and Exhibition of the National Strength and Conditioning Association, Las Vegas, NV, USA, 12–15 July 2017. [Google Scholar]
- Kurokawa, S.; Fukunaga, T.; Nagano, A.; Fukashiro, S. Interaction between fascicles and tendinous structures during counter movement jumping investigated in vivo. J. Appl. Physiol. 2003, 95, 2306. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Shibayama, A.; Takeshita, D.; Hay, D.C.; Fukashiro, S. A comparison of the mechanical effect of arm swing and countermovement on the lower extremities in vertical jumping. Hum. Mov. Sci. 2008, 27, 636–648. [Google Scholar] [CrossRef] [PubMed]
- Nascimento-Ferreira, M.; Moraes, A.D.; Carvalho, H. Ordinary Least Products Regression: A Robust Statistical Tool for Assessing Agreement Between Measures Attended by High Variability. Research Square. 2020. Available online: https://www.researchsquare.com/article/rs-71462/v1 (accessed on 10 January 2024).
- Donath, L.; Wolf, P. Reliability of Force Application to Instrumented Climbing Holds in Elite Climbers. J. Appl. Biomech. 2015, 31, 377–382. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Comfort, P.; Harry, J.R.; McMahon, J.J.; Chavda, S.; Bishop, C. A Systematic Review of the Different Calculation Methods for Measuring Jump Height During the Countermovement and Drop Jump Tests. Sports Med. 2023, 53, 1055–1072. [Google Scholar] [CrossRef]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Jidovtseff, B.; Quievre, J.; Harris, N.; Cronin, J. Influence of jumping strategy on kinetic and kinematic variables. J. Sports Med. Phys. Fit. 2014, 54, 129–138. [Google Scholar]
- FátimaGeraldo, G.d.; TelesBredt, S.d.G.; Karlmenzel, H.J.; Peixotocanado, G.H.D.C.; de Andrade, A.G.P. Drop height is influenced by box height but not by individual stature during drop jumps. J. Phys. Educ. 2019, 30, e3078. [Google Scholar]
- Merrigan, J.; Stone, J.; Galster, S.; Hagen, J. Analyzing Force-Time Curves: Comparison of Commercially Available Automated Software and Custom MATLAB Analyses. J. Strength Cond. Res. 2022, 36, 2387–2402. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Ford, K.; Bangen, K.; Myer, G.; Hewett, T. The validation of a portable force plate for measuring force-time data during jumping and landing tasks. J. Strength Cond. Res. 2006, 20, 730–734. [Google Scholar] [CrossRef]
Variables | Definition | Calculation |
---|---|---|
Body weight (kg) | Body weight in a steady state | m = |
Jump Height (m) | The height of the jump is calculated from the Take-Off velocity. | |
Absolute Maximal Force (N) | Maximal Force during the propulsion phase. | F = Fmax |
Absolute maximal Power (P) | Maximal Power during the propulsion phase. | P = Pmax |
Vertical Take Off Velocity (m/s) | The vertical movement velocity was calculated from Flight Time at the Take-Off. | |
Jump Time (s) | The time interval between the movement and the take-off phase. | t = ttake-off − tonset of movement |
Push Off time (s) | The time interval between the propulsion and the take-off phase. | t = ttake-off − tonset of propulsion |
Flight Time (s) | The time interval between the take-off and the end phase. | t = tend − ttake-off |
Push Off Force Impulse (N·s) | Force impulse between the propulsion and the take-off phases. | I = F · (ttake-off − tonset of propulsion) |
RSImod | Jump Height divided by Jump Time. | RSImod = H/(ttake-off − tonset of movement) |
Variables | Kistler (Mean ± SD) | Kunwei (Mean ± SD) | Intercept ( 95% CI ) | Slope ( 95% CI ) | ||||
Body weight (kg) | 74.27 ± 12.27 | 74.01 ± 12.30 | (0.35 | 0.5 | 0.65) | (1.00 | 1.00 | 1.00) |
Jump Height (m) | 0.39 ± 0.08 | 0.39 ± 0.08 | (0.01 | 0.01 | 0.01) | (0.98 | 0.99 | 1.01) |
Absolute Maximal Force (N) | 1820.21 ± 337.30 | 1812.75 ± 338.71 | (9.84 | 14.46 | 19.08) | (0.99 | 1.00 | 1.00) |
Absolute maximal Power (P) | 3954.3 ± 697.46 | 3960.86 ± 692.30 | (−54.73 | −13.28 | 28.17) | (0.99 | 1.00 | 1.01) |
Vertical Take Off Velocity (m/s) | 2.78 ± 0.30 | 2.73 ± 0.28 | (0.07 | 0.1 | 0.12) | (0.98 | 0.98 | 0.99) |
Jump Time (s) | 0.90 ± 0.129 | 0.86 ± 0.12 | (0.07 | 0.08 | 0.08) | (0.95 | 0.96 | 0.96) |
Push Off time (s) | 0.29 ± 0.03 | 0.29 ± 0.03 | (0.01 | 0.01 | 0.01) | (1.00 | 1.00 | 1.00) |
Flight Time (s) | 0.57 ± 0.06 | 0.57 ± 0.06 | (0.01 | 0.01 | 0.01) | (1.00 | 1.00 | 1.00) |
Push Off Force Impulse (N·s) | 202.17 ± 34.24 | 202.1 ± 34.53 | (−1.67 | 0.05 | 1.76) | (0.99 | 1.00 | 1.01) |
RSImod | 0.44 ± 0.12 | 0.46 ± 0.13 | (−0.05 | −0.04 | −0.03) | (1.02 | 1.04 | 1.06) |
Variables | ICC | p | MDC |
---|---|---|---|
Body weight (kg) | 0.999 | 0.001 | 0.71 |
Jump Height (m) | 0.958 | 0.001 | 0.03 |
Absolute Maximal Force (N) | 0.999 | 0.001 | 21.59 |
Absolute maximal Power (P) | 0.980 | 0.001 | 196.81 |
Vertical Take Off Velocity (m/s) | 0.955 | 0.001 | 0.12 |
Jump Time (s) | 0.972 | 0.001 | 0.04 |
Push Off time (s) | 0.992 | 0.001 | 0.01 |
Flight Time (s) | 1.000 | 0.001 | 0.00 |
Push Off Force Impulse (N·s) | 0.986 | 0.001 | 8.11 |
RSImod | 0.960 | 0.001 | 0.05 |
Variables | Test | F | p | ||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st & 2nd | 1st & 3rd | 2nd & 3rd | ||
Body weight (kg) | 74.02 ± 12.52 | 73.97 ± 12.45 | 74.051 ± 12.57 | 0.325 | 1.000 | 1.000 | 1.000 |
Jump Height (m) | 0.38 ± 0.09 | 0.38 ± 0.08 | 0.39 ± 0.08 | 2.186 | 1.000 | 0.268 | 0.115 |
Absolute Maximal Force (N) | 1774.35 ± 318.63 | 1823.34 ± 343.90 | 1840.57 ± 365.77 | 6.622 | 0.010 * | 0.018 * | 1.000 |
Absolute maximal Power (P) | 3940.87 ± 673.71 | 3958.23 ± 727.17 | 3983.47 ± 709.79 | 0.601 | 1.000 | 0.978 | 1.000 |
Vertical Take Off Velocity (m/s) | 2.71 ± 0.31 | 2.73 ± 0.28 | 2.76 ± 0.29 | 2.070 | 1.000 | 0.313 | 0.108 |
Jump Time (s) | 0.89 ± 0.14 | 0.85 ± 0.12 | 0.85 ± 0.11 | 2.004 | 0.390 | 0.416 | 1.000 |
Push Off time (s) | 0.29 ± 0.03 | 0.29 ± 0.03 | 0.29 ± 0.03 | 1.850 | 0.226 | 1.000 | 0.208 |
Flight Time (s) | 0.56 ± 0.07 | 0.57 ± 0.06 | 0.57 ± 0.06 | 4.681 | 0.268 | 0.057 | 0.186 |
Push Off Force Impulse (N·s) | 200.30 ± 34.21 | 201.93 ± 35.6 | 204.07 ± 35.38 | 2.937 | 1.000 | 0.137 | 0.113 |
RSImod | 0.44 ± 0.12 | 0.46 ± 0.14 | 0.47 ± 0.13 | 3.135 | 0.294 | 0.132 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, C.; Li, M.; Li, X.; Li, Z.; Liu, T.; Wang, L.; Zhu, W.; Chen, L.; Sun, Y. The Validity of a Dual-Force Plate for Assessing Counter-Movement Jump Performance. Sensors 2024, 24, 5748. https://doi.org/10.3390/s24175748
Mao C, Li M, Li X, Li Z, Liu T, Wang L, Zhu W, Chen L, Sun Y. The Validity of a Dual-Force Plate for Assessing Counter-Movement Jump Performance. Sensors. 2024; 24(17):5748. https://doi.org/10.3390/s24175748
Chicago/Turabian StyleMao, Chuangui, Ming Li, Xinglu Li, Zhengao Li, Tao Liu, Liangsen Wang, Wenfei Zhu, Lixia Chen, and Yuliang Sun. 2024. "The Validity of a Dual-Force Plate for Assessing Counter-Movement Jump Performance" Sensors 24, no. 17: 5748. https://doi.org/10.3390/s24175748
APA StyleMao, C., Li, M., Li, X., Li, Z., Liu, T., Wang, L., Zhu, W., Chen, L., & Sun, Y. (2024). The Validity of a Dual-Force Plate for Assessing Counter-Movement Jump Performance. Sensors, 24(17), 5748. https://doi.org/10.3390/s24175748