A Compact Wearable Textile Antenna for NB-IoT and ISM Band Patient Tracking Applications
<p>Wearable textile monopole antenna on phantom model (<span class="html-italic">W<sub>Ph</sub></span> = <span class="html-italic">L<sub>Ph</sub></span> = 150 mm).</p> "> Figure 2
<p>Design of antenna: (<b>a</b>) Top view (<b>b</b>) Bottom view.</p> "> Figure 3
<p>Design evolution of the antenna in five steps: (<b>a</b>) Step 0, (<b>b</b>) Step 1, (<b>c</b>) Step 2, (<b>d</b>) Step 3, (<b>e</b>) Step 4 (Proposed).</p> "> Figure 4
<p>Simulated |S<sub>11</sub>| of design evolution.</p> "> Figure 5
<p>Current distribution at (<b>a</b>) 1.8 GHz, (<b>b</b>) 2.45 GHz, (<b>c</b>) 5.8 GHz.</p> "> Figure 6
<p>Analysis of bending states (at different radii) of the proposed antenna on cuboid phantom at (<b>a</b>) <span class="html-italic">R</span><sub>1</sub> = 25 mm, (<b>b</b>) <span class="html-italic">R</span><sub>2</sub> = 35 mm, (<b>c</b>) <span class="html-italic">R</span><sub>3</sub> = 45 mm.</p> "> Figure 7
<p>Comparison of |S<sub>11</sub>| at different radii of the phantom: 25, 35, and 45 mm.</p> "> Figure 8
<p>Comparison of antenna’s input impedance in the air (without the human body) and on the human body.</p> "> Figure 9
<p>Comparison of antenna’s efficiency in the air (without the human body) and on the human body.</p> "> Figure 10
<p>Comparison of antenna’s |S<sub>11</sub>| parameters at different distances from human body.</p> "> Figure 11
<p>Comparison of antenna’s peak gain at different distances from human body.</p> "> Figure 12
<p>Antenna’s fabricated prototype: (<b>a</b>) Top, (<b>b</b>) Bottom, (<b>c</b>) In a random conformal state.</p> "> Figure 13
<p>Antenna’s bending at different radii (in air): (<b>a</b>) 45 mm, (<b>b</b>) 35 mm, (<b>c</b>) 25 mm.</p> "> Figure 14
<p>Antenna’s measurement: (<b>a</b>) On wrist, (<b>b</b>) On arm, (<b>c</b>) On chest.</p> "> Figure 15
<p>Comparison of simulated and measured reflection coefficients.</p> "> Figure 16
<p>Comparison of measured reflection coefficients in different bending scenarios (at 25 mm, 35 mm, and 45 mm).</p> "> Figure 17
<p>Comparison of simulated and measured radiation patterns of the proposed antenna (<b>a</b>) H-plane at 1.8 GHz (<b>b</b>) E-plane at 1.8 GHz (<b>c</b>) H-plane at 2.45 GHz (<b>d</b>) E-plane at 2.45 GHz (<b>e</b>) H-plane at 5.8 GHz (<b>f</b>) E-plane at 5.8 GHz.</p> "> Figure 18
<p>3D radiation patterns of the wearable textile antenna: (<b>a</b>) 1.8 GHz, (<b>b</b>) 2.45 GHz, (<b>c</b>) 5.8 GHz.</p> "> Figure 19
<p>Comparison of measured radiation patterns in different bending scenarios (at 25 mm, 35 mm, and 45 mm) (<b>a</b>) H-plane at 1.8 GHz (<b>b</b>) E-plane at 1.8 GHz (<b>c</b>) H-plane at 2.45 GHz (<b>d</b>) E-plane at 2.45 GHz (<b>e</b>) H-plane at 5.8 GHz (<b>f</b>) E-plane at 5.8 GHz.</p> "> Figure 20
<p>Simulated vs. measured efficiency of the proposed wearable antenna.</p> "> Figure 21
<p>Simulated average SAR distribution on the cuboid phantom: at (<b>a</b>) 1.8 GHz (<b>b</b>) 2.45 GHz (<b>c</b>) 5.8 GHz.</p> "> Figure 22
<p>Link margin between <span class="html-italic">T<sub>x</sub></span> (proposed ant.) and <span class="html-italic">R<sub>x</sub></span> (monopole ant.) antennas at 1.8/2.45/5.8 GHz frequency bands.</p> ">
Abstract
:1. Introduction
- The antenna should withstand different physical impacts related to regular usage;
- Multiband behavior is needed to support numerous applications;
- The wearable antenna must be small-sized, flexible, lightweight, and comfortable on the body.
2. Antenna Design Methodology
2.1. Antenna Design
2.2. Evolution of the Antenna
2.3. Bending Analysis of Proposed Antenna
2.4. Effect of the Human Body on the Antenna’s Behavior
2.5. Antenna’s Performance at Different Distances from the Human Body
3. Results and Discussion
3.1. Reflection Coefficient Measurements
3.2. Radiation Pattern Measurements
3.3. Antenna’s Radiation Efficiency
3.4. Specific Absorption Ratio (SAR) Analysis
3.5. Link Budget Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haddara, M.; Staaby, A. RFID applications and adoptions in healthcare: A review on patient safety. Procedia Comput. Sci. 2018, 138, 80–88. [Google Scholar] [CrossRef]
- Yao, W.; Chu, C.H.; Li, Z. The adoption and implementation of RFID technologies in healthcare: A literature review. J. Med. Syst. 2012, 36, 3507–3525. [Google Scholar] [CrossRef]
- Rais, N.H.M.; Soh, P.J.; Malek, F.; Ahmad, S.; Hashim, N.B.M.; Hall, P.S. A review of wearable antenna. In Proceedings of the Loughborough Antennas and Propagation Conference, LAPC 2009—Conference Proceedings, Loughborough, UK, 16–17 November 2009; pp. 225–228. [Google Scholar]
- Xie, Z.; Ji, B.; Huo, Q. Mechanics Design of Stretchable Near Field Communication Antenna with Serpentine Wires. J. Appl. Mech. Trans. ASME 2018, 85, 045001. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D.; et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef]
- Zhao, Z.; Avila, R.; Bai, D.; Xia, D.; She, E.; Huang, Y.; Rogers, J.A.; Xie, Z. A mechanics and electromagnetic scaling law for highly stretchable radio frequency electronics. J. Mech. Phys. Solids 2024, 191, 105784. [Google Scholar] [CrossRef]
- Xie, Z.; Avila, R.; Huang, Y.; Rogers, J.A. Flexible and Stretchable Antennas for Biointegrated Electronics. Adv. Mater. 2020, 32, e1902767. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Compact All-Textile Dual-Band Antenna Loaded with Metamaterial-Inspired Structure. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1486–1489. [Google Scholar] [CrossRef]
- Yan, S.; Volskiy, V.; Vandenbosch, G.A.E. Compact Dual-Band Textile PIFA for 433-MHz/2.4-GHz ISM Bands. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2436–2439. [Google Scholar] [CrossRef]
- Gao, G.P.; Yang, C.; Hu, B.; Zhang, R.F.; Wang, S.F. A Wearable PIFA with an All-Textile Metasurface for 5 GHz WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 288–292. [Google Scholar] [CrossRef]
- Singh, R.K.; Michel, A.; Nepa, P.; Salvatore, A.; Terraroli, M.; Perego, P. Compact and Wearable Yagi-Like Textile Antennas for Near-Field UHF-RFID Readers. IEEE Trans. Antennas Propag. 2021, 69, 1324–1333. [Google Scholar] [CrossRef]
- Roopan; Samantaray, D.; Bhattacharyya, S. A multiband wearable antenna with defected ground structure. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference, AP-RASC, New Delhi, India, 9–15 March 2019; Volume 2, pp. 1–4. [Google Scholar]
- Azeez, H.I.; Yang, H.C.; Chen, W.S. Wearable triband E-shaped dipole antenna with low SAR for IoT applications. Electronics 2019, 8, 665. [Google Scholar] [CrossRef]
- Yu, S.W.; Zhang, X.; Wu, Q.S.; Zhu, L.; Yuan, T.; Jiang, Q.H. Low-SAR and High-FBR Patch Antenna with Small Ground Size for Wearable Devices. IEEE Open J. Antennas Propag. 2024, 5, 124–129. [Google Scholar] [CrossRef]
- Ejaz, A.; Jabeen, I.; Khan, Z.U.; Alomainy, A.; Aljaloud, K.; Alqahtani, A.H.; Hussain, N.; Hussain, R.; Amin, Y. A High Performance All-Textile Wearable Antenna for Wristband Application. Micromachines 2023, 14, 1169. [Google Scholar] [CrossRef]
- Saied, I.M.; Arslan, T. Noninvasive Wearable RF Device Towards Monitoring Brain Atrophy and Lateral Ventricle Enlargement. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 4, 61–68. [Google Scholar] [CrossRef]
- Jiang, Y.; Pan, K.; Leng, T.; Hu, Z. Smart Textile Integrated Wireless Powered near Field Communication Body Temperature and Sweat Sensing System. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 4, 164–170. [Google Scholar] [CrossRef]
- Su, W.; Prasannakumar, P.V.; Li, Y.; Ye, G.; Zhu, J. Wearable Antennas for Virtual Reality Cross-Body Links. IEEE Open J. Antennas Propag. 2023, 2022, 207–215. [Google Scholar] [CrossRef]
- Singh, R.K.; Michel, A.; Nepa, P.; Salvatore, A. Wearable Dual-Band Quasi-Yagi Antenna for UHF-RFID and 2.4 GHz Applications. IEEE J. Radio Freq. Identif. 2020, 4, 420–427. [Google Scholar] [CrossRef]
- Le, T.T.; Yun, T.Y. Wearable Dual-Band High-Gain Low-SAR Antenna for Off-Body Communication. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1175–1179. [Google Scholar] [CrossRef]
- Li, H.; Du, J.; Yang, X.; Gao, S. Low-Profile All-Textile Multiband Microstrip Circular Patch Antenna for WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 779–783. [Google Scholar] [CrossRef]
- Çelenk, E.; Tokan, N.T. All-Textile On-Body Antenna for Military Applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1065–1069. [Google Scholar] [CrossRef]
- Samal, P.B.; Chen, S.J.; Fumeaux, C. Wearable Textile Multiband Antenna for WBAN Applications. IEEE Trans. Antennas Propag. 2023, 71, 1391–1402. [Google Scholar] [CrossRef]
- Memon, A.W.; de Paula, I.L.; Malengier, B.; Vasile, S.; Van Torre, P.; Van Langenhove, L. Breathable textile rectangular ring microstrip patch antenna at 2.45 ghz for wearable applications. Sensors 2021, 21, 1635. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Gil, I.; Fernandez-Garcia, R. Textile UHF-RFID Antenna Embroidered on Surgical Masks for Future Textile Sensing Applications. IEEE Trans. Antennas Propag. 2022, 70, 5246–5253. [Google Scholar] [CrossRef]
- Martinez, I.; Mao, C.X.; Vital, D.; Shahariar, H.; Werner, D.H.; Jur, J.S.; Bhardwaj, S. Compact, Low-Profile and Robust Textile Antennas with Improved Bandwidth for Easy Garment Integration. IEEE Access 2020, 8, 77490–77500. [Google Scholar] [CrossRef]
- Le, D.; Ahmed, S.; Ukkonen, L.; Bjorninen, T. A Small All-Corners-Truncated Circularly Polarized Microstrip Patch Antenna on Textile Substrate for Wearable Passive UHF RFID Tags. IEEE J. Radio Freq. Identif. 2021, 5, 106–112. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Xu, L.; Li, Y.; Ye, T.T. Characterizations and Optimization Techniques of Embroidered RFID Antenna for Wearable Applications. IEEE J. Radio Freq. Identif. 2020, 4, 38–45. [Google Scholar] [CrossRef]
- Thalmann, T.; Popović, Z.; Notaroš, B.M.; Mosig, J.R. Investigation and design of a multi-band wearable antenna. In Proceedings of the European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, Berlin, Germany, 23–27 March 2009; pp. 462–465. [Google Scholar]
- Malik, H.; Alam, M.M.; Le Moullec, Y.; Kuusik, A. NarrowBand-IoT Performance Analysis for Healthcare Applications. Procedia Comput. Sci. 2018, 130, 1077–1083. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X. Wearable Dual-Band and Dual-Polarized Textile Antenna for On- and Off-Body Communications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2324–2328. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.H.A.; Yamada, Y.; Nordin, M.S.A. Analysis on the Effects of the Human Body on the Performance of Electro-Textile Antennas for Wearable Monitoring and Tracking Application. Materials 2019, 12, 1636. [Google Scholar] [CrossRef] [PubMed]
- Major, P.; Flap, M.; Flap, M. Iowa Head and Neck Protocols. 2017, pp. 1–8. Available online: https://medicine.uiowa.edu/iowaprotocols/sialendoscopy (accessed on 9 April 2024).
- Gljušćić, P.; Zelenika, S.; Blažević, D.; Kamenar, E. Kinetic energy harvesting for wearable medical sensors. Sensors 2019, 19, 4922. [Google Scholar] [CrossRef]
Ref. (Year) | [19] (2020) | [20] (2021) | [21] (2022) | [22] (2022) | [23] (2023) | This Work |
---|---|---|---|---|---|---|
Area (mm2) | 65 × 60 | 60 × 60 | 60 × 60 | 55 × 40 | 84 × 69 | 60 × 60 |
Area (λ02) | 0.18 × 0.17 (0.03) | 0.49 × 0.49 (0.24) | 0.64 × 0.64 (0.41) | 1.46 × 1.06 (1.55) | 0.55 × 0.67 (0.37) | 0.36 × 0.36 (0.13) |
Frequency (GHz) | 0.868/2.45 | 2.45/3.45 | 2.4/3.32/3.93/5.8 | 8 | 2.4/5 | 1.8/2.45/5.8 |
B.W. (%) | NG/3.5 | 4.9/6.7 | 3.7/5.7/ 5.85/9.8 | 13.1 | 5/76 | 17.2/39.1/19.6 |
Peak gain (dBi) | NG/−1.4 | 6.7/8.9 | −0.81/−2.81/−1.16/2.8 | 5.2 | 7.2 | 3.7/5.3/9.6 |
SAR (W/Kg) 1 gm/10 gm | NG | 0.1/0.04 (at 0.5 W) | 0.11/0.33 (at 1 W) | 0.7/--- (at 1 W) | NG | 0.0796/0.0759 0.0575/0.0552 0.0226/0.0204 (at 1 W) |
Symbol | Value | Symbol | Value | Symbol | Value | Symbol | Value |
---|---|---|---|---|---|---|---|
L | 60 | L7 | 18 | WF | 3.6 | X1 | 18.5 |
LP | 50 | L8 | 13 | W1–W6 | 6.0 | X2 | 34.5 |
LF | 15 | L9 | 18 | W7 | 05 | X3 | 21.0 |
L1 | 25 | L10 | 12 | W8 | 11 | X4 | 17.0 |
L2 | 09 | L11 | 3.0 | W9 | 03 | X5 | 7.5 |
L3 | 03 | L12 | 08 | W10 | 11 | Y1 | 4.0 |
L4 | 07 | L13 | 38 | W11 | 03 | Y2–Y4 | 5.0 |
L5 | 03 | W | 60 | W12 | 06 | ||
L6 | 3.5 | WP | 40 | W13 | 31 |
Frequency (GHz) | Simulation (Chest Phantom) | Measured (on Human Chest) |
---|---|---|
1.8 | 3.7 | 2.8 |
2.45 | 5.3 | 4.6 |
5.8 | 9.6 | 8.2 |
Frequency (GHz) | At 45 mm | At 35 mm | At 25 mm |
---|---|---|---|
1.8 | 2.1 | 2.0 | 0.2 |
2.45 | 4.5 | 4.6 | 3.2 |
5.8 | 8.2 | 8.1 | 7.8 |
Frequency (GHz) | Maximum SAR (on Phantom) | |
---|---|---|
1 gm | 10 gm | |
1.8 | 0.0796 | 0.0759 |
2.45 | 0.0575 | 0.0552 |
5.8 | 0.0226 | 0.0204 |
Transmitter | ||
---|---|---|
Frequency (GHz) | 1.8/2.45/5.8 | |
Gt | Antenna gain (dBi) | 3.7/5.3/9.6 |
Pt | Transmitted power (dBm) | 16 |
EIRP (dBm) | 19.7/21.3/25.6 | |
Receiver | ||
Gr | Receiver antenna gain (dBi) (external antenna) | 2.15 |
To | Ambient temperature (K) | 293 |
Boltzmann constant | 1.38 × 10−23 | |
No | Noise power density (dB/Hz) | −203.9 |
Signal quality | ||
Br | Bit rate (Mbps) | 0.250, 1, 10 |
Eb/No | Ideal PSK (dB) | 9.6 |
Gc | Coding gain (dB) | 0 |
Gd | Fixing deterioration (dB) | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, D.; Tiwari, R.N.; Kumar, S.; Sharma, S.; Matekovits, L. A Compact Wearable Textile Antenna for NB-IoT and ISM Band Patient Tracking Applications. Sensors 2024, 24, 5077. https://doi.org/10.3390/s24155077
Sharma D, Tiwari RN, Kumar S, Sharma S, Matekovits L. A Compact Wearable Textile Antenna for NB-IoT and ISM Band Patient Tracking Applications. Sensors. 2024; 24(15):5077. https://doi.org/10.3390/s24155077
Chicago/Turabian StyleSharma, Deepti, Rakesh N. Tiwari, Sachin Kumar, Satyendra Sharma, and Ladislau Matekovits. 2024. "A Compact Wearable Textile Antenna for NB-IoT and ISM Band Patient Tracking Applications" Sensors 24, no. 15: 5077. https://doi.org/10.3390/s24155077