Uttarakhand State Earthquake Early Warning System: A Case Study of the Himalayan Environment
<p>Location of the sensors installed in seismogenic areas of Uttarakhand.</p> "> Figure 2
<p>Logical structure diagram of the collection system network.</p> "> Figure 3
<p>Streaming of data from sensors to the server in real-time during an earthquake event.</p> "> Figure 4
<p>Flowchart of the UEEWS.</p> "> Figure 5
<p>The decision-making flowchart of the UEEWS.</p> "> Figure 6
<p>Flowchart depicting the modules of the UEEWS siren.</p> "> Figure 7
<p>The schematic diagram for the sirens.</p> "> Figure 8
<p>The diagram illustrates the data-recording time (<span class="html-italic">Td</span>), data-processing time (<span class="html-italic">Tpr</span>), event-reporting time (<span class="html-italic">Tr</span>), target-area lead time (<span class="html-italic">Tw</span>), and shear-wave travel time (<span class="html-italic">Ts</span>) during the Tehri Garhwal earthquake on 6 November 2022.</p> "> Figure 9
<p>Estimated lead time for cities during the Tehri Garhwal earthquake on 6 November 2022. The plots (<b>i</b>–<b>vi</b>) represent the lead times users at different locations got during this earthquake. The pink ovals represent the blind zone.</p> "> Figure 10
<p>The screenshot of the notification received on the mobile app by a user.</p> "> Figure 11
<p>The positions of the triggered sensors along with the epicenter of the earthquake that occurred on 8 February 2020, in Pithoragarh. Each triggered sensor is labeled with three rows: the first row represents the station’s short code, the second row indicates the measured peak ground acceleration (PGA) in gal, and the third row denotes the epicentral distance in km.</p> "> Figure 12
<p>Recorded vertical channel accelerograms at different stations during the Pithoragarh earthquake on 8 February 2020.</p> "> Figure 13
<p>Comparison between earthquake information, including (<b>a</b>) epicenters, (<b>b</b>) depths, and (<b>c</b>) response times estimated by the UEEWS server and published on the NCS website. In (<b>c</b>), the response time is estimated based on the first reports. The dashed line in (<b>c</b>) represents the average response time i.e., 13.1 s, excluding the maximum response time of one report, which was 22.38 s.</p> "> Figure 14
<p>Comparison of earthquakes’ magnitude estimated by (<b>a</b>) the UEEWS in real time and NCS, and (<b>b</b>) re-running the recorded data in offline mode and NCS. The filled circles indicate the estimated magnitude in the final report, and the open circles depict the estimated magnitude in the first report.</p> ">
Abstract
:1. Introduction
2. Seismic Activity in the Himalayas and the Region of Interest
3. Architecture of the Developed UEEWS
3.1. Seismic Network
3.2. Data Streaming
3.3. Data Processing
3.4. Event Detection
3.5. Estimation of Earthquake Parameters
3.5.1. Location Estimation
3.5.2. Magnitude Estimation
3.5.3. Report Generation
4. Warning Modes
4.1. Sirens
4.2. Mobile Application
5. System Application Effectiveness—The Case of the Tehri Garhwal Earthquake Warning
6. Performance of UEEWS
7. Discussion
8. Conclusions
9. Future Outlook
- Currently, the warning system does not provide information about the intensity of the earthquake at the user’s location. This feature could be incorporated once the prediction of strong ground motion and its conversion to intensity is integrated into the algorithm.
- At present, warnings are issued based on peak displacement (Pd) of the first three seconds of P-wave data after P-onset from at least four sensors. However, there are various other attributes such as thepredominant period (), characteristic period (), cumulative absolute velocity (CAV), squared velocity integral (), log averaged period (), root sum square cumulative velocity (RSSCV), etc., may be explored in the future.
- Due to the intricate nature of Himalayan tectonics, it is recommended to deploy a dense network featuring wider aperture arrays.
- The issuance of warnings should also be vetted for their societal and management implications.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Event No. * | dd/mm/yyyy | Reporting Time (UTC) | Origin Time (UTC) | Location (Lat, Long) | Depth (km) | Magnitude (MPd) |
---|---|---|---|---|---|---|
1 | 29/11/2015 | 02:47:51.49 | 02:47:37.4 | 30.4863, 79.3448 | 10 | 2.7 |
2 | 06/12/2017 | 15:19:53.19 | 15:19:41.77 | 30.5194, 79.0776 | 10 | 3.23 |
2 | 06/12/2017 | 15:19:53.29 | 15:19:41.35 | 30.5418, 79.0876 | 10 | 3.25 |
2 | 06/12/2017 | 15:19:53.29 | 15:19:41.35 | 30.5418, 79.0876 | 10 | 3.25 |
2 | 06/12/2017 | 15:19:56.19 | 15:19:41.29 | 30.548, 79.1144 | 10 | 3.29 |
2 | 06/12/2017 | 15:19:57.20 | 15:19:45.24 | 30.3236, 79.2647 | 10 | 2.98 |
2 | 06/12/2017 | 15:19:58.20 | 15:19:35.24 | 30.8739, 79.2841 | 10 | 3.7 |
2 | 06/12/2017 | 15:19:58.20 | 15:19:42.07 | 30.5123, 79.0864 | 10 | 3.22 |
2 | 06/12/2017 | 15:19:58.30 | 15:19:44.92 | 30.3556, 79.1095 | 40 | 3.43 |
3 | 17/05/2019 | 19:38:49.14 | 19:38:32.36 | 30.8397, 78.9278 | 20 | 3.68 |
4 | 08/02/2020 | 01:01:58.29 | 01:01:47.00 | 29.9462, 79.7177 | 10 | 2.75 |
4 | 08/02/2020 | 01:02:05.68 | 01:01:46.67 | 29.9233, 79.731 | 10 | 2.81 |
4 | 08/02/2020 | 01:02:16.65 | 01:01:46.62 | 29.9634, 79.7324 | 10 | 2.75 |
4 | 08/02/2020 | 01:02:24.66 | 01:01:47.73 | 29.8904, 79.704 | 10 | 3.26 |
4 | 08/02/2020 | 01:02:29.67 | 01:01:46.60 | 29.9521, 79.7446 | 10 | 2.82 |
4 | 08/02/2020 | 01:02:38.65 | 01:01:46.60 | 29.96, 79.7581 | 10 | 2.83 |
4 | 08/02/2020 | 01:02:48.63 | 01:01:48.61 | 29.8858, 79.7914 | 10 | 3.23 |
4 | 08/02/2020 | 01:02:55.65 | 01:01:48.83 | 29.9737, 79.6174 | 10 | 3.13 |
4 | 08/02/2020 | 01:03:03.37 | 01:01:46.90 | 30.0308, 79.7639 | 10 | 3 |
5 | 23/05/2021 | 19:02:24.34 | 19:02:1.96 | 30.8563, 79.4656 | 40 | 5.81 |
5 | 23/05/2021 | 19:02:30.16 | 19:02:2.21 | 30.5294, 78.8786 | 10 | 5.04 |
5 | 23/05/2021 | 19:02:33.17 | 19:02:18.65 | 30.0403, 79.5388 | 10 | 4.37 |
5 | 23/05/2021 | 19:02:35.22 | 19:02:12.29 | 30.5087, 78.5582 | 50 | 5.19 |
6 | 28/06/2021 | 06:48:23.12 | 06:48:7.56 | 29.8284, 79.7013 | 30 | 3.95 |
6 | 28/06/2021 | 06:48:33.25 | 06:48:12.27 | 30.0456, 79.9528 | 10 | 3.97 |
6 | 28/06/2021 | 06:48:43.30 | 06:48:12.26 | 30.0627, 79.938 | 10 | 4.28 |
7 | 11/09/2021 | 00:28:42.15 | 00:28:32.88 | 30.418, 79.1635 | 10 | 3.85 |
7 | 11/09/2021 | 00:28:45.20 | 00:28:33.18 | 30.4073, 79.1369 | 10 | 3.87 |
7 | 11/09/2021 | 00:28:50.73 | 00:28:33.92 | 30.3856, 79.1033 | 10 | 3.84 |
7 | 11/09/2021 | 00:28:54.30 | 00:28:34.08 | 30.3915, 79.0967 | 10 | 3.96 |
7 | 11/09/2021 | 00:28:58.80 | 00:28:33.81 | 30.372, 79.1132 | 10 | 3.93 |
7 | 11/09/2021 | 00:29:03.55 | 00:28:34.11 | 30.3562, 79.0924 | 10 | 3.86 |
7 | 11/09/2021 | 00:29:07.30 | 00:28:33.11 | 30.3935, 79.1481 | 10 | 4.16 |
8 | 04/12/2021 | 20:33:00.19 | 20:32:46.32 | 30.6556, 78.8006 | 20 | 4.02 |
8 | 04/12/2021 | 20:33:01.20 | 20:32:47.12 | 30.6612, 78.7411 | 20 | 3.92 |
8 | 04/12/2021 | 20:33:06.63 | 20:32:49.33 | 30.6377, 78.6378 | 10 | 3.53 |
9 | 29/12/2021 | 19:08:29.14 | 19:08:19.59 | 29.8527, 80.4285 | 10 | 2.77 |
9 | 29/12/2021 | 19:08:30.14 | 19:08:19.59 | 29.8527, 80.4285 | 10 | 2.77 |
9 | 29/12/2021 | 19:08:31.14 | 19:08:19.35 | 29.875, 80.4245 | 10 | 2.98 |
9 | 29/12/2021 | 19:08:36.32 | 19:08:19.53 | 29.8694, 80.4184 | 10 | 3.04 |
9 | 29/12/2021 | 19:08:45.13 | 19:08:19.47 | 29.8766, 80.412 | 10 | 3.06 |
10 | 24/01/2022 | 19:39:11.18 | 19:38:59.13 | 29.9247, 80.2875 | 20 | 3.91 |
10 | 24/01/2022 | 19:39:12.15 | 19:38:59.79 | 29.8952, 80.3093 | 20 | 3.63 |
10 | 24/01/2022 | 19:39:17.16 | 19:38:59.90 | 29.9196, 80.3407 | 10 | 3.41 |
10 | 24/01/2022 | 19:39:25.04 | 19:38:59.98 | 29.918, 80.3445 | 10 | 3.72 |
10 | 24/01/2022 | 19:39:29.56 | 19:39:1.76 | 29.7706, 80.424 | 10 | 3.2 |
10 | 24/01/2022 | 19:39:33.07 | 19:39:1.95 | 29.8117, 80.3844 | 10 | 3.19 |
10 | 24/01/2022 | 19:39:38.07 | 19:39:1.74 | 29.802, 80.3832 | 10 | 3.44 |
11 | 11/02/2022 | 23:34:06.22 | 23:33:49.02 | 30.6858, 78.7893 | 40 | 5.36 |
11 | 11/02/2022 | 23:34:11.33 | 23:33:45.38 | 30.3062, 78.804 | 40 | 4.61 |
12 | 09/04/2022 | 11:22:35.16 | 11:22:35.16 | 30.928, 78.2043 | 10 | 3.97 |
12 | 09/04/2022 | 11:22:35.16 | 11:22:35.16 | 30.928, 78.2043 | 10 | 3.97 |
12 | 09/04/2022 | 11:22:24.76 | 11:22:24.76 | 30.926, 77.8187 | 40 | 5.31 |
13 | 11/05/2022 | 04:33:18.20 | 04:33:6.72 | 29.905, 80.3747 | 10 | 3.81 |
13 | 11/05/2022 | 04:33:18.20 | 04:33:7.22 | 29.9052, 80.3738 | 10 | 3.97 |
13 | 11/05/2022 | 04:33:18.23 | 04:33:6.62 | 29.9105, 80.3847 | 10 | 3.87 |
13 | 11/05/2022 | 04:33:22.99 | 04:33:7.47 | 29.904, 80.378 | 10 | 3.98 |
13 | 11/05/2022 | 04:33:26.53 | 04:33:6.86 | 29.9018, 80.3744 | 10 | 3.97 |
14 | 06/11/2022 | 03:03:15.19 | 03:03:2.89 | 30.7034, 78.5735 | 10 | 3.97 |
14 | 06/11/2022 | 03:03:15.20 | 03:03:2.91 | 30.7022, 78.5715 | 10 | 4.06 |
14 | 06/11/2022 | 03:03:15.20 | 03:03:2.94 | 30.7035, 78.5717 | 10 | 4.07 |
14 | 06/11/2022 | 03:03:20.12 | 03:03:2.91 | 30.704, 78.5739 | 10 | 4.04 |
14 | 06/11/2022 | 03:03:23.07 | 03:03:4.49 | 30.68, 78.4674 | 10 | 3.95 |
14 | 06/11/2022 | 03:03:25.98 | 03:03:3.65 | 30.6839, 78.526 | 10 | 4.04 |
15 | 08/11/2022 | 20:27:55.13 | 20:27:37.05 | 29.4852, 80.4608 | 30 | 4.96 |
15 | 08/11/2022 | 20:27:56.14 | 20:27:36.84 | 29.6299, 80.5183 | 20 | 4.75 |
15 | 08/11/2022 | 20:27:57.14 | 20:27:44.87 | 29.5721, 79.8488 | 10 | 3.74 |
15 | 08/11/2022 | 20:28:01.68 | 20:27:40.50 | 29.5372, 80.1791 | 40 | 4.62 |
15 | 08/11/2022 | 20:28:04.58 | 20:27:46.66 | 29.5067, 79.7675 | 20 | 3.76 |
15 | 08/11/2022 | 20:28:04.58 | 20:27:46.11 | 29.5403, 79.8131 | 20 | 4.08 |
15 | 08/11/2022 | 20:28:04.58 | 20:27:46.59 | 29.5749, 79.7956 | 20 | 4.2 |
15 | 08/11/2022 | 20:28:07.43 | 20:27:46.27 | 29.5368, 79.8036 | 20 | 4.04 |
15 | 08/11/2022 | 20:28:10.29 | 20:27:46.39 | 29.502, 79.7674 | 20 | 4.13 |
15 | 08/11/2022 | 20:28:15.16 | 20:27:53.34 | 29.8195, 79.3817 | 20 | 3.94 |
15 | 08/11/2022 | 20:28:28.18 | 20:28:12.62 | 29.564, 79.4362 | 40 | 5.21 |
15 | 08/11/2022 | 20:28:28.18 | 20:28:17.49 | 29.7588, 79.2381 | 20 | 4.47 |
15 | 08/11/2022 | 20:28:28.18 | 20:28:13.56 | 29.6138, 79.4733 | 10 | 4.48 |
15 | 08/11/2022 | 20:28:31.17 | 20:28:14.67 | 29.8597, 79.5053 | 20 | 4.78 |
15 | 08/11/2022 | 20:28:33.19 | 20:28:14.31 | 29.7838, 79.4785 | 20 | 5.01 |
16 | 12/11/2022 | 14:27:41.34 | 14:27:18.33 | 29.6791, 80.5748 | 10 | 4.76 |
16 | 12/11/2022 | 14:27:43.14 | 14:27:18.63 | 29.7032, 80.5524 | 10 | 5.07 |
16 | 12/11/2022 | 14:28:11.20 | 14:27:47.20 | 29.6864, 80.2348 | 80 | 5.94 |
16 | 12/11/2022 | 14:28:12.10 | 14:27:57.58 | 29.8083, 79.5232 | 10 | 4.47 |
16 | 12/11/2022 | 14:28:12.10 | 14:27:57.81 | 29.7662, 79.414 | 20 | 4.54 |
16 | 12/11/2022 | 14:28:16.73 | 14:27:55.67 | 29.8034, 79.6264 | 20 | 4.85 |
16 | 12/11/2022 | 14:28:22.18 | 14:27:57.43 | 29.7977, 79.7098 | 10 | 5.31 |
17 | 24/01/2023 | 08:59:11.12 | 08:58:44.19 | 29.6906, 81.3695 | 60 | 5.79 |
17 | 24/01/2023 | 08:59:12.13 | 08:58:30.25 | 29.395, 82.2557 | 20 | 6.3 |
17 | 24/01/2023 | 08:59:12.23 | 08:58:53.05 | 29.6871, 80.4168 | 20 | 4.49 |
17 | 24/01/2023 | 08:59:17.14 | 08:58:43.25 | 29.5046, 81.1573 | 30 | 5.55 |
17 | 24/01/2023 | 08:59:47.46 | 08:59:26.27 | 29.6626, 79.8292 | 10 | 4.66 |
17 | 24/01/2023 | 08:59:47.46 | 08:59:24.80 | 29.6885, 79.9168 | 20 | 5.32 |
17 | 24/01/2023 | 08:59:49.17 | 08:59:29.67 | 29.6095, 79.6486 | 10 | 4.58 |
18 | 03/10/2023 | 09:21:34.16 | 09:21:2.26 | 29.5995, 81.9826 | 70 | 6.87 |
18 | 03/10/2023 | 09:21:34.19 | 09:21:2.26 | 29.5995, 81.9826 | 70 | 6.87 |
18 | 03/10/2023 | 09:21:34.20 | 09:21:21.30 | 29.6806, 80.1117 | 50 | 5.1 |
19 | 03/11/2023 | 18:04:01.15 | 18:03:47.16 | 29.5394, 80.2398 | 50 | 5.77 |
19 | 03/11/2023 | 18:04:09.18 | 18:03:44.01 | 29.2213, 80.7229 | 20 | 5.89 |
Event No. | dd/mm/yyyy | Origin Time (UTC) | Location (Lat, Long) | Depth (km) | Magnitude (Mw) | Region |
---|---|---|---|---|---|---|
1 | 29/11/2015 | 02:47:38 | 30.6, 79.6 | 10 | 4 | Chamoli |
2 | 06/12/2017 | 15:19:54 | 30.4, 79.1 | 30 | 5.5 | Rudraprayag |
3 | 17/05/2019 | 19:38:44 | 30.5, 79.3 | 10 | 3.8 | Chamoli |
4 | 08/02/2020 | 01:01:49 | 30.3, 79.86 | 48.2 | 4.7 | Pithoragarh |
5 | 23/05/2021 | 19:01:45 | 30.9, 79.44 | 22 | 4.3 | Chamoli |
6 | 28/06/2021 | 06:48:05 | 30.08, 80.26 | 10 | 3.7 | Pithoragarh |
7 | 11/09/2021 | 00:28:33 | 30.37, 79.13 | 5 | 4.7 | Chamoli |
8 | 04/12/2021 | 20:32:47 | 30.61, 78.82 | 10 | 3.8 | Tehri |
9 | 29/12/2021 | 19:08:21 | 29.75, 80.33 | 10 | 4.1 | Pithoragarh |
10 | 24/01/2022 | 19:39:00 | 29.79, 80.35 | 10 | 4.3 | Pithoragarh |
11 | 11/02/2022 | 23:33:34 | 30.72, 78.85 | 28 | 4.1 | Tehri |
12 | 09/04/2022 | 11:22:36 | 30.92, 78.21 | 10 | 4.1 | Uttarkashi |
13 | 11/05/2022 | 04:33:09 | 29.73, 80.34 | 5 | 4.6 | Pithoragarh |
14 | 06/11/2022 | 3:03:03 | 30.67, 78.6 | 5 | 4.5 | Tehri Garhwal |
15 | 08/11/2022 | 20:27:24 | 29.24, 81.06 | 10 | 5.8 | Dipayal, Nepal |
16 | 12/11/2022 | 14:27:06 | 29.28, 81.2 | 10 | 5.4 | Dipayal, Nepal |
17 | 24/01/2023 | 8:58:31 | 29.41, 81.68 | 10 | 5.8 | Nepal |
18 | 03/10/2023 | 09:21:04 | 29.39, 81.23 | 5 | 6.2 | Nepal |
19 | 03/11/2023 | 18:02:54 | 28.84, 82.19 | 10 | 6.4 | Nepal |
References
- Bahinipati, C.S.; Patnaik, U.; Viswanathan, P.K. What Causes Economic Losses from Natural Disasters in India? In Handbook of Research on Climate Change Impact on Health and Environmental Sustainability; Dinda, S., Ed.; IGI Global: Hershey, PA, USA, 2015; pp. 157–175. ISBN 9781466688148. [Google Scholar]
- IPCC Summary for Policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B.; Barros, V.; Stocker, T.F.D.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 1–19. [Google Scholar]
- Narayan, J.P.; Sharma, M.L.; Kumar, A. A seismological report on the 26 January 2001 Bhuj, India Earthquake. Seismol. Res. Lett. 2002, 73, 343–355. [Google Scholar] [CrossRef]
- Sharma, M.L. Seismic Hazard in the Northern India Region. Seismol. Res. Lett. 2003, 74, 141–147. [Google Scholar] [CrossRef]
- Shanker, D.; Sharma, M.L. Estimation of Seismic Hazard Parameters for the Himalayas and its Vicinity from Complete Data Files. Pure Appl. Geophys. 1998, 152, 267–279. [Google Scholar] [CrossRef]
- Sharma, M.L.; Arora, M.K. Prediction of Seismicity Cycles in the Himalayas Using Artificial Neural Network. Acta Geophys. Pol. 2005, 53, 299–309. [Google Scholar]
- Bilham, R.; Larsont, K.; Freymueller, J. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 1997, 386, 61–63. [Google Scholar] [CrossRef]
- Sharma, M.L.; Lindholm, C. Earthquake Hazard Assessment for Dehradun, Uttarakhand, India, Including a Characteristic Earthquake Recurrence Model for the Himalaya Frontal Fault (HFF). Pure Appl. Geophys. 2012, 169, 1601–1617. [Google Scholar] [CrossRef]
- Espinosa-Aranda, J.M.; Cuellar, A.; Garcia, A.; Ibarrola, G.; Islas, R.; Maldonado, S.; Rodriguez, F.H. Evolution of the Mexican Seismic Alert System (SASMEX). Seismol. Res. Lett. 2009, 80, 694–706. [Google Scholar] [CrossRef]
- Mittal, H.; Wu, Y.M.; Sharma, M.L.; Yang, B.M.; Gupta, S. Testing the performance of earthquake early warning system in northern India. Acta Geophys. 2019, 67, 59–75. [Google Scholar] [CrossRef]
- Allen, R.M.; Melgar, D. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annu. Rev. Earth Planet. Sci. 2019, 47, 361–388. [Google Scholar] [CrossRef]
- Allen, R.M.; Brown, H.; Hellweg, M.; Khainovski, O.; Lombard, P.; Neuhauser, D. Real-time earthquake detection and hazard assessment by ElarmS across California. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sharma, M.L.; Kumar, A. Multi-parameter algorithm for Earthquake Early Warning. Geomat. Nat. Hazards Risk 2016, 7, 1242–1264. [Google Scholar] [CrossRef]
- Wu, Y.M.; Kanamori, H. Rapid assessment of damage potential of earthquakes in Taiwan from the Beginning of P waves. Bull. Seismol. Soc. Am. 2005, 95, 1181–1185. [Google Scholar] [CrossRef]
- Nakamura, Y.; Saita, J. FREQL and AcCo for a quick response to earthquakes. In Earthquake Early Warning Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 307–324. [Google Scholar]
- Aranda, J.M.E.; Jimenez, A.; Ibarrola, G.; Alcantar, F.; Aguilar, A.; Inostroza, M.; Maldonado, S. Mexico City Seismic Alert System. Seismol. Res. Lett. 1995, 66, 42–53. [Google Scholar] [CrossRef]
- Nakamura, Y.; Saita, J. UrEDAS, the earthquake warning system: Today and tomorrow. In Earthquake Early Warning Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 249–281. [Google Scholar]
- Hoshiba, M.; Kamigaichi, O.; Saito, M.; Tsukada, S.; Hamada, N. Earthquake early warning starts nationwide in Japan. EOS 2008, 89, 73–74. [Google Scholar] [CrossRef]
- Kamigaichi, O.; Saito, M.; Doi, K.; Matsumori, T.; Tsukada, S.; Takeda, K.; Shimoyama, T.; Nakamura, K.; Kiyomoto, M.; Watanabe, Y. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismol. Res. Lett. 2009, 80, 717–726. [Google Scholar] [CrossRef]
- Hsiao, N.C.; Wu, Y.M.; Shin, T.C.; Zhao, L.; Teng, T.L. Development of earthquake early warning system in Taiwan. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Chen, D.Y.; Hsiao, N.C.; Wu, Y.M. The earthworm based earthquake alarm reporting system in Taiwan. Bull. Seismol. Soc. Am. 2015, 105, 568–579. [Google Scholar] [CrossRef]
- Wu, Y.M.; Liang, W.T.; Mittal, H.; Chao, W.A.; Lin, C.H.; Huang, B.S.; Lin, C.M. Performance of a low-cost earthquake early warning system (P-Alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismol. Res. Lett. 2016, 87, 1050–1059. [Google Scholar] [CrossRef]
- Espinosa-Aranda, J.M.; Jimenez, A.; Ibarrola, G.; Alcantar, F.; Aguilar, A.; Inostroza, M.; Maldonado, S. Results of the Mexico city early warning system. In Proceedings of the Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, 23 June 1996; pp. 1–8. [Google Scholar]
- Espinosa-Aranda, J.M.; Cuéllar, A.; Ibarrola, G.; Islas, R.; García, A.; Rodríguez, F.H.; Frontana, B. The Seismic Alert System of Mexico (SASMEX) and their Alert Signals Broadcast Results. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012; pp. 1–9. [Google Scholar]
- Sheen, D.; Park, J.; Chi, H.; Hwang, E.; Lim, I.; Seong, Y.J.; Pak, J. The First Stage of an Earthquake Early Warning System in South Korea. Seismol. Res. Lett. 2017, 88, 1491–1498. [Google Scholar] [CrossRef]
- Erdik, M.; Fahjan, Y.; Ozel, O.; Alcik, H.; Mert, A.; Gul, M. Istanbul earthquake rapid response and early warning system. Bull. Earthq. Eng. 2003, 1, 157–163. [Google Scholar] [CrossRef]
- Alcik, H.; Ozel, O.; Apaydin, N.; Erdik, M. A study on warning algorithms for Istanbul earthquake early warning system. Geophys. Res. Lett. 2009, 36, 3–5. [Google Scholar] [CrossRef]
- Carranza, M.; Buforn, E.; Colombelli, S.; Zollo, A. Earthquake early warning for southern Iberia: A P wave threshold-based approach. Geophys. Res. Lett. 2013, 40, 4588–4593. [Google Scholar] [CrossRef]
- Pazos, A.; Romeu, N.; Lozano, L.; Colom, Y.; Mesa, M.L.; Goula, X.; Jara, J.A.; Cantavella, J.V.; Zollo, A.; Hanka, W.; et al. A Regional Approach for Earthquake Early Warning in South West Iberia: A Feasibility Study. Bull. Seismol. Soc. Am. 2015, 105, 560–567. [Google Scholar] [CrossRef]
- Romeu Petit, N.; Colom Puyané, Y.; Jara Salvador, J.A.; Goula Suriñach, X.; Susagna Vidal, T. Development of an Earthquake early warning system based on Earthworm: Application to Southwest Iberia. Bull. Seismol. Soc. Am. 2016, 106, 1–12. [Google Scholar] [CrossRef]
- Zollo, A.; Iannaccone, G.; Convertito, V.; Elia, L.; Iervolino, I.; Lancieri, M.; Lomax, A.; Martino, C.; Satriano, C.; Weber, E.; et al. Earthquake Early Warning System in Southern Italy. In Encyclopedia of Complexity and Systems Science; Meyers, R., Ed.; Springer: New York, NY, USA, 2009; pp. 2395–2421. ISBN 978-0-387-30440-3. [Google Scholar]
- Zollo, A.; Iannaccone, G.; Lancieri, M.; Cantore, L.; Convertito, V.; Emolo, A.; Festa, G.; Gallovič, F.; Vassallo, M.; Martino, C.; et al. Earthquake early warning system in southern Italy: Methodologies and performance evaluation. Geophys. Res. Lett. 2009, 36, L00B07. [Google Scholar] [CrossRef]
- Satriano, C.; Elia, L.; Martino, C.; Lancieri, M.; Zollo, A.; Iannaccone, G. PRESTo, the earthquake early warning system for Southern Italy: Concepts, capabilities and future perspectives. Soil Dyn. Earthq. Eng. 2011, 31, 137–153. [Google Scholar] [CrossRef]
- Wenzel, F.; Oncescu, M.C.; Baur, M.; Fiedrich, F.; Ionescu, C. An Early Warning System for Bucharest. Seismol. Res. Lett. 1999, 70, 161–169. [Google Scholar] [CrossRef]
- Böse, M.; Sokolov, V.; Wenzel, F. Shake map methodology for intermediate-depth Vrancea (Romania) earthquakes. Earthq. Spectra 2009, 25, 497–514. [Google Scholar] [CrossRef]
- Böse, M.; Ionescu, C.; Wenzel, F. Earthquake early warning for Bucharest, Romania: Novel and revised scaling relations. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Peng, H.; Wu, Z.; Wu, Y.-M.; Yu, S.; Zhang, D.; Huang, W. Developing a Prototype Earthquake Early Warning System in the Beijing Capital Region. Seismol. Res. Lett. 2011, 82, 394–403. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Song, J. Threshold-based evolutionary magnitude estimation for an earthquake early warning system in the Sichuan–Yunnan region, China. Sci. Rep. 2020, 10, 21055. [Google Scholar] [CrossRef]
- Crowell, B.W.; Schmidt, D.A.; Bodin, P.; Vidale, J.E.; Baker, B.; Barrientos, S.; Geng, J. G-FAST Earthquake Early Warning Potential for Great Earthquakes in Chile. Seismol. Res. Lett. 2018, 89, 542–556. [Google Scholar] [CrossRef]
- Brooks, B.A.; Protti, M.; Ericksen, T.; Bunn, J.; Vega, F.; Cochran, E.S.; Duncan, C.; Avery, J.; Minson, S.E.; Chaves, E.; et al. Robust Earthquake Early Warning at a Fraction of the Cost: ASTUTI Costa Rica. AGU Adv. 2021, 2, e2021AV000407. [Google Scholar] [CrossRef]
- Porras, J.; Massin, F.; Arroyo-solórzano, M.; Arroyo, I. Preliminary Results of an Earthquake Early Warning System in Costa Rica. Front. Earth Sci. 2021, 9, 700843. [Google Scholar] [CrossRef]
- Massin, F.; Clinton, J.; Böse, M. Status of Earthquake Early Warning in Switzerland. Front. Earth Sci. 2021, 9, 707654. [Google Scholar] [CrossRef]
- Strauch, W.; Talavera, E.; Tenorio, V.; Ramírez, J.; Argüello, G.; Herrera, M.; Acosta, A.; Morales, A. Toward an Earthquake and Tsunami Monitoring and Early Warning System for Nicaragua and Central America. Seismol. Res. Lett. 2018, 89, 399–406. [Google Scholar] [CrossRef]
- Nof, R.N.; Lior, I.; Kurzon, I. Earthquake Early Warning System in Israel—Towards an Operational Stage. Front. Earth Sci. 2021, 9, 684421. [Google Scholar] [CrossRef]
- Nof, R.N.; Kurzon, I. TRUAA—Earthquake Early Warning System for Israel: Implementation and Current Status. Seism. Instrum. 2021, 92, 325–341. [Google Scholar] [CrossRef]
- Cua, G.; Fischer, M.; Heaton, T.; Wiemer, S. Real-time Performance of the Virtual Seismologist Earthquake Early Warning Algorithm in Southern California. Seismol. Res. Lett. 2009, 80, 740–747. [Google Scholar] [CrossRef]
- Gansser, A. Geology of the Himalaya; DE Sitter, L.U., Ed.; Interscience Publishers: London, UK; New York, NY, USA; Sydney, Australia, 1964; ISBN 0470290552. [Google Scholar]
- Bhatia, S.C.; Kumar, M.R.; Gupta, H.K. A probabilistic seismic hazard map of India and adjoining regions. Ann. Geofis. 1999, 42, 1153–1164. [Google Scholar]
- Paudyal, H.; Panthi, A. Seismic Vulnerability in the Himalayan Region. Himal. Phys. 2010, 1, 14–17. [Google Scholar] [CrossRef]
- Valdiya, K.S. Aspects of TECTONICS: Focus on South Central Asia; Tata McGraw-Hill: New Delhi, India, 1984; ISBN 0074519727/9780074519721. [Google Scholar]
- Zhang, P.; Yang, Z.; Gupta, H.K.; Bhatia, S.C.; Shedlock, K.M. Global Seismic Hazard Assessment Program (GSHAP) in continental Asia. Ann. Geofis. 1999, 42, 1167–1190. [Google Scholar] [CrossRef]
- Malik, J.N.; Nakata, T.; Philip, G.; Suresh, N.; Virdi, N.S. Active Fault and Paleoseismic Investigation: Evidence of a Historic Earthquake along Chandigarh Fault in the Frontal Himalayan Zone, NW India. Himal. Geol. 2008, 29, 109–117. [Google Scholar]
- Gupta, H.K.; Gahalaut, V.K. Can an earthquake of Mw~9 occur in the Himalayan region? Geol. Soc. Spec. Publ. 2015, 412, 43–53. [Google Scholar] [CrossRef]
- Khattri, K.M.; Tyagi, A.K. Seismicity Patterns in the Himalayan Plate Boundary and Identification of the Areas of High Seismic Potential. Tectonophysics 1983, 96, 281–297. [Google Scholar] [CrossRef]
- Sreejith, K.M.; Sunil, P.S.; Agrawal, R.; Saji, A.P.; Rajawat, A.S.; Ramesh, D.S. Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.K.; Rao, N.P.; Rastogi, B.K.; Sarkar, D. The Deadliest Intraplate Earthquake. Science 2001, 291, 2101–2102. [Google Scholar] [CrossRef]
- Gauchan, D.; Joshi, B.K.; Ghimire, K. Impact of 2015 Earthquake on Economy, Agriculture and Agrobiodiversity in Nepal. In Proceedings of the Sharingshop on Germplasm Rescue, Kathmandu, Nepal, 18 December 2017; pp. 19–25. [Google Scholar]
- Ambraseys, N.; Bilham, R. A note on the Kangra Ms = 7.8 earthquake of 4 April 1905. Curr. Sci. 2000, 79, 45–50. [Google Scholar]
- Oldham, R.D. Report on the Great Earthquake of 12th June, 1897. Mem. Geol. Surv. India 1899, 29. [Google Scholar]
- Priyanka, R.S.; Jayangondaperumal, R.; Pandey, A.; Mishra, R.L. Primary surface rupture of the 1950 Tibet-Assam great earthquake along the eastern Himalayan front. Sci. Rep. 2017, 7, 5433. [Google Scholar] [CrossRef]
- USGS National Earthquake Information Center M 8.6-1950 Assam-Tibet Earthquake. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/official19500815140934_30/impact (accessed on 23 November 2023).
- Singh, D.D.; Gupta, H.K. Source Dynamics of two Great Earthquakes of the Indian Subcontinent: The Bihar-Nepal Earthquake of January 15, 1934 and The Quetta Earthquake of May 30, 1935. Bull. Seismol. Soc. Am. 1980, 70, 757–773. [Google Scholar] [CrossRef]
- Nasu, N. The Great Indian Earthquake of January 15, 1934. Bull. Earthq. Res. Inst. 1934, 13, 417–440. [Google Scholar]
- Gunn, A.M. Bihar, India, Earthquake. In Encyclopedia of Disasters. Environment Catastrophes and Human Tragedies; Greenwood Press: Westport, CT, USA, 2008; Volume 1, pp. 337–339. ISBN 978–0–313–34004–8. [Google Scholar]
- Jain, S.K.; Singh, R.P.; Gupta, V.K.; Nagar, A. Garhwal Earthquake of Oct. 20, 1991. EERI Spec. Earthq. Rep. EERI Newsl. 1991, 26, 1–8. [Google Scholar]
- Jain, S.K.; Murty, C.V.R.; Arlekar, J.N. Chamoli (Himalaya, India) Earthquake of 29 March 1999. EERI Spec. Earthq. Rep. EERI Newsl. 1999, 33, 1–8. [Google Scholar]
- Kamal, K.; Chabak, S.K. Chamoli aftershocks: A view from the nearest seismic observatory. Himal. Geol. 2002, 23, 63–67. [Google Scholar]
- Mahajan, A.K.; Thakur, V.C.; Sharma, M.L.; Chauhan, M. Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India. Nat. Hazards 2010, 53, 443–457. [Google Scholar] [CrossRef]
- Khattri, K.N. Great Earthquakes, Seismicity Gaps and Potential for Earthquake Disaster along the Himalaya Plate Boundary. Tectonophysics 1987, 138, 79–92. [Google Scholar] [CrossRef]
- Srivastava, H.N. Earthquake Prediction Studies in Himalaya Critical Evaluation. Mem. Geol. Soc. India 1992, 23, 151–172. [Google Scholar]
- Srivastava, H.N.; Verma, M.; Bansal, B.K.; Sutar, A.K. Discriminatory characteristics of seismic gaps in Himalaya. Geomat. Nat. Hazards Risk 2015, 6, 224–242. [Google Scholar] [CrossRef]
- Cuéllar, A.; Espinosa-Aranda, J.M.; Suárez, R.; Ibarrola, G.; Uribe, A.; Rodríguez, F.H.; Islas, R.; Rodríguez, G.M.; García, A.; Frontana, B. The Mexican Seismic Alert System (SASMEX): Its Alert Signals, Broadcast Results and Performance during the M 7.4 Punta Maldonado Earthquake of March 20th. In Early Warning for Geological Disasters; Wenzel, F., Zschau, J., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014; pp. 71–87. ISBN 978-3-642-12232-3. [Google Scholar]
- Suárez, G.; Novelo, D.; Mansilla, E. Performance evaluation of the seismic alert system (SAS) in Mexico City: A seismological and a social perspective. Seismol. Res. Lett. 2009, 80, 707–716. [Google Scholar] [CrossRef]
- Okada, Y. Preliminary Report of the 2011 off the Pacific Coast of Tohoku Earthquake; NIED: Tokyo, Japan, 2011; pp. 1–9. [Google Scholar]
- Honma, F.; Ichikawa, F. Earthquake Early Warning Disaster Mitigation System for Protecting Semiconductor Plant in Japan. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008; pp. 1–2. [Google Scholar]
- Khattri, K.N. Seismic gaps and likelihood of occurrence of larger earthquakes in Northern India. Curr. Sci. 1993, 64, 885–888. [Google Scholar]
- Bilham, R.; Gaur, V.K.; Molnar, P. Himalayan Seismic Hazard. Science 2001, 293, 1442–1444. [Google Scholar] [CrossRef]
- Bilham, R. Earthquakes in India and the Himalaya: Tectonics, geodesy and history. Ann. Geophys. 2004, 47, 839–858. [Google Scholar] [CrossRef]
- Bajaj, S.; Sharma, M.L. Modeling Earthquake Recurrence in the Himalayan Seismic Belt Using Time-Dependent Stochastic Models: Implications for Future Seismic Hazards. Pure Appl. Geophys. 2019, 176, 5261–5278. [Google Scholar] [CrossRef]
- Bajaj, S.; Sharma, M.L. Time dependent probabilities for earthquake occurrence in Central Himalaya. In Proceedings of the 16th Symposium on Earthquake Engineering, Roorkee, India, 20–22 December 2018; pp. 1–10. [Google Scholar]
- Chaudhary, C.; Sharma, M.L. Probabilistic Models for Earthquakes with Large Return Periods in Himalaya Region. Pure Appl. Geophys. 2017, 174, 4313–4327. [Google Scholar] [CrossRef]
- Choudhary, C.; Sharma, M.L. Global strain rates in western to central Himalayas and their implications in seismic hazard assessment. Nat. Hazards 2018, 94, 1211–1224. [Google Scholar] [CrossRef]
- Gupta, H.K. Seismicity in the Vicinity of Dams on Himalayan Rivers and the Problem of Reservoir Induced Earthquakes. J. Geol. Soc. India 1984, 25, 85–93. [Google Scholar]
- Gupta, H.K. Major and Great Earthquakes in the Himalayan Region: An Overview; Balassanian, S., Cisternas, A., Melkumyan, M., Eds.; Springer Science+Business Media, B.V.: Berlin/Heidelberg, Germany, 2012; Volume 12, ISBN 9788578110796. [Google Scholar]
- Bansal, B.K.; Verma, M. Science and Technology Based Earthquake Risk Reduction Strategies: The Indian Scenario. Acta Geophys. 2013, 61, 808–821. [Google Scholar] [CrossRef]
- Census of India 2011. In Census of India 2011 Population Projections for India and States 2011–2036; National Commission on Population, Ministry of Health & Family Welfare: New Delhi, India, 2020.
- Apollo, M. The Population of Himalayan Regions by the Numbers: Past, Present and Future. In Contemporary Studies in Environment and Tourism; Efe, R., Öztürk, M., Eds.; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2017; pp. 145–159. ISBN 1-4438-7283-0. [Google Scholar]
- Wyss, M.; Wang, R.J.; Zschau, J.; Xia, Y. Earthquake Loss Estimates in Near Real-Time. EOS Trans. Am. Geophys. Union 2006, 87, 477–479. [Google Scholar] [CrossRef]
- Chamoli, B.P.; Kumar, A.; Chen, D.Y.; Gairola, A.; Jakka, R.S.; Pandey, B.; Kumar, P.; Rathore, G. A Prototype Earthquake Early Warning System for Northern India. J. Earthq. Eng. 2021, 25, 2455–2473. [Google Scholar] [CrossRef]
- Mittal, H.; Kumar, A.; Ramhmachhuani, R. Indian National Strong Motion Instrumentation Network and Site Characterization of Its Stations. Int. J. Geosci. 2012, 03, 1151–1167. [Google Scholar] [CrossRef]
- Dimri, V.P. Uttarakhand had early warning communication in 1894! Curr. Sci. 2013, 105, 152. [Google Scholar]
- Bhardwaj, R. Analysis of Tauc (tc) and Pd attributes for Earthquake Early Warning in India. In Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, 24–28 September 2012; pp. 1–8. [Google Scholar]
- Wu, Y.M.; Chen, D.Y.; Lin, T.L.; Hsieh, C.Y.; Chin, T.L.; Chang, W.Y.; Li, W.S.; Ker, S.H. A high-density seismic network for earthquake early warning in Taiwan based on low cost sensors. Seismol. Res. Lett. 2013, 84, 1048–1054. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Lin, T.-L. A Test of Earthquake Early Warning System Using Low Cost Accelerometer in Hualien, Taiwan. In Early Warning for Geological Disasters: Scientific Methods and Current Practice; Zschau, F.J.W., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2014; pp. 307–331. [Google Scholar]
- Johnson, C.E.; Bittenbinder, A.; Bogaert, B.; Dietz, L.; Kohler, W. Earthworm: A Flexible Approach to Seismic Network Processing. IRIS Newsl. 1995, 14, 1–4. [Google Scholar]
- ISTI Earthworm Central. Available online: http://www.earthwormcentral.org/ (accessed on 1 April 2016).
- Saragiotis, C.D.; Hadjileontiadis, L.J.; Panas, S.M. PAI-S/K: A robust automatic seismic P phase arrival identification scheme. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1395–1404. [Google Scholar] [CrossRef]
- Akazawa, T. A Technique for Automatic Detection of Onset Time of P- and S-Phases in Strong Motion Records. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1 August 2004; pp. 1–9. [Google Scholar]
- Gentili, S.; Michelini, A. Automatic picking of P and S phases using a neural tree. J. Seismol. 2006, 10, 39–63. [Google Scholar] [CrossRef]
- Ait Laasri, E.H.; Akhouayri, E.S.; Agliz, D.; Atmani, A.; Hassan, E.; Laasri, A.; Akhouayri, E.S.; Agliz, D.; Atmani, A. Automatic detection and picking of P-wave arrival in locally stationary noise using cross-correlation. Digit. Signal Process. 2014, 26, 87–100. [Google Scholar] [CrossRef]
- Ross, Z.E.; Ben-Zion, Y. Automatic picking of direct P, S seismic phases and fault zone head waves. Geophys. J. Int. 2014, 199, 368–381. [Google Scholar] [CrossRef]
- Kalkan, E. An automatic P-phase Arrival-Time Picker. Bull. Seismol. Soc. Am. 2016, 106, 971–986. [Google Scholar] [CrossRef]
- Chi-Durán, R.; Comte, D.; Díaz, M.; Silva, J.F. Automatic detection of P- and S-wave arrival times: New strategies based on the modified fractal method and basic matching pursuit. J. Seismol. 2017, 21, 1171–1184. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q.; Liu, X.; Zhao, J.; Xu, Q.; Yang, Y.; Liu, G. Adaptive and automatic P- and S-phase pickers based on frequency spectrum variation of sliding time windows. Geophys. J. Int. 2018, 215, 2172–2182. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, L.; Liu, X.; Zhao, J.; Peng, P. Accurate identification of microseismic P- and S-phase arrivals using the multi-step AIC algorithm. J. Appl. Geophys. 2018, 150, 284–293. [Google Scholar] [CrossRef]
- Ahmed, A.; Sharma, M.L.; Sharma, A. Wavelet Based Automatic Phase Picking Algorithm for 3-Component Broadband Seismological Data. J. Seismol. Earthq. Eng. 2007, 9, 15–24. [Google Scholar]
- Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532. [Google Scholar] [CrossRef]
- Allen, R. Automatic phase pickers: Their present use and future prospects. Bull. Seismol. Soc. Am. 1982, 72, S225–S242. [Google Scholar] [CrossRef]
- Geiger, L. Probability method for the determination of earthquake epicenters from the arrival times only. Bull. Saint Louis Univ. 1912, 8, 60–71. [Google Scholar]
- Kanaujia, J.; Kumar, A.; Gupta, S.C. 1D velocity structure and characteristics of contemporary local seismicity around the Tehri region, Garhwal Himalaya. Bull. Seismol. Soc. Am. 2015, 105, 1852–1869. [Google Scholar] [CrossRef]
- Eisermann, A.S.; Ziv, A.; Wust-Bloch, G.H. Real-Time Back Azimuth for Earthquake Early Warning. Bull. Seismol. Soc. Am. 2015, 105, 2274–2285. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Zhao, L. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Hsiao, N.C.; Wu, Y.M.; Zhao, L.; Chen, D.Y.; Huang, W.T.; Kuo, K.H.; Shin, T.C.; Leu, P.L. A new prototype system for earthquake early warning in Taiwan. Soil Dyn. Earthq. Eng. 2011, 31, 201–208. [Google Scholar] [CrossRef]
- Rathore, G.; Kumar, A.; Jakka, R.S.; Chamoli, B.P. Development of Earthquake Early Warning Siren for Regional Earthquake Early Warning System in India. In Proceedings of the 16th Symposium on Earthquake Engineering, Roorkee, India, 20–22 December 2018; pp. 1–9. [Google Scholar]
- Bansal, B.K.; Pandey, A.P.; Singh, A.P.; Suresh, G.; Singh, R.K.; Gautam, J.L. National Seismological Network in India for Real-Time Earthquake Monitoring. Seismol. Res. Lett. 2021, 92, 2255–2269. [Google Scholar] [CrossRef]
- Kumar, A.; Mittal, H.; Sachdeva, R. Indian Strong Motion Instrumentation Network. Seismol. Res. Lett. 2012, 83, 59–66. [Google Scholar] [CrossRef]
- Kumar, P.; Chamoli, B.P.; Kumar, A.; Gairola, A. Attenuation Relationship for Peak Horizontal Acceleration of Strong Ground Motion of Uttarakhand Region of Central Himalayas. J. Earthq. Eng. 2019, 25, 2537–2554. [Google Scholar] [CrossRef]
- Sharma, M.L. Attenuation Relationship for Estimation of Peak Ground Horizontal Acceleration Using Data from Strong-Motion Arrays in India. Bull. Seismol. Soc. Am. 1998, 88, 1063–1069. [Google Scholar] [CrossRef]
- Sharma, M.L. A New Empirical Attenuation Relationship for Peak Ground Horizontal Acceleration for Himalayan Region using Indian and Worldwide Data Set. J. Geophys. 2005, 26, 151–158. [Google Scholar]
- Sharma, M.; Douglas, J.; Bungum, H.; Kotadia, J. Ground-motion prediction equations based on data from the Himalayan and Zagros region. J. Earthq. Eng. 2009, 13, 1191–1210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Kamal; Sharma, M.L.; Jakka, R.S.; Pratibha. Uttarakhand State Earthquake Early Warning System: A Case Study of the Himalayan Environment. Sensors 2024, 24, 3272. https://doi.org/10.3390/s24113272
Kumar P, Kamal, Sharma ML, Jakka RS, Pratibha. Uttarakhand State Earthquake Early Warning System: A Case Study of the Himalayan Environment. Sensors. 2024; 24(11):3272. https://doi.org/10.3390/s24113272
Chicago/Turabian StyleKumar, Pankaj, Kamal, Mukat Lal Sharma, Ravi Sankar Jakka, and Pratibha. 2024. "Uttarakhand State Earthquake Early Warning System: A Case Study of the Himalayan Environment" Sensors 24, no. 11: 3272. https://doi.org/10.3390/s24113272