Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications
<p>The schematic diagram of the measurement for MI effect (inset: fabricated composite ribbon strip).</p> "> Figure 2
<p>XRD patterns of the Co-based ribbon and of the composite ribbon strips with different thicknesses of the carbon coatings.</p> "> Figure 3
<p>Typical SEM images: (<b>a</b>) the Co-based ribbon, (<b>b</b>–<b>d</b>) composite ribbon strips at t<sub>c</sub> = 0 nm, 60 nm, and 120 nm; (<b>e</b>) cross section of the composite ribbon at t<sub>c</sub> = 90 nm.</p> "> Figure 4
<p>AFM diagram of composite ribbon strips with different carbon layer thickness: (<b>a</b>) t<sub>c</sub> = 0 nm, (<b>b</b>) t<sub>c</sub> = 30 nm, (<b>c</b>) t<sub>c</sub> = 60 nm, (<b>d</b>) t<sub>c</sub> = 90 nm, (<b>e</b>) t<sub>c</sub> = 120 nm, and (<b>f</b>) t<sub>c</sub> = 150 nm.</p> "> Figure 5
<p>Normalized magnetic hysteresis loops of the as-cast ribbon and composite ribbon strips (<b>a</b>), and partial enlargement of the hysteresis loops (<b>b</b>). The insert shows the variation curve of H<sub>c</sub> with different carbon layer thicknesses.</p> "> Figure 6
<p>Magnetic field dependence of the MI ratio of composite ribbon strips with different carbon layer thicknesses at different frequencies.</p> "> Figure 7
<p>(<b>a</b>) Magnetic field dependence of MI ratio of the ribbon strips with different carbon layer thicknesses at 3 MHz. (<b>b</b>) H<sub>dip</sub> variation curves with varying carbon layer thickness.</p> "> Figure 8
<p>(<b>a</b>) Frequency dependence of the MI ratio with different carbon layer thicknesses; (<b>b</b>) variation of the maximum MI ratio and f<sub>max</sub> with different thicknesses of the carbon layer.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, P.; Hayward, T.J. Comparative study of the giant stress impedance behavior of commercial amorphous ribbons for strain sensing applications. J. Appl. Phys. 2022, 131, 214503. [Google Scholar] [CrossRef]
- Phan, M.H.; Peng, H.X. Giant magnetoimpedance materials: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 323–420. [Google Scholar] [CrossRef]
- Shuai, S.; Lu, S.; Xiang, Z.; Lu, W. Stress-induced giant magneto-impedance effect of amorphous CoFeNiSiPB ribbon with magnetic field annealing. J. Magn. Magn. Mater. 2022, 551, 169131. [Google Scholar] [CrossRef]
- Pan, P.; Moorehead, R.D.; Hayward, T.J. Influence of geometry on the giant magnetoimpedance of high-aspect ratio amorphous magnetic ribbons. J. Appl. Phys. 2020, 128, 174504. [Google Scholar] [CrossRef]
- Zare, M.; Jamilpanah, L.; Sadeghi, A.; Ghanaatshoar, M.; Mohseni, M. Enhancing magnetoimpedance response by anisotropic surface-charge accumulation. J. Magn. Magn. Mater. 2024, 593, 171838. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Liu, M.; Meng, Z.; Sun, X.; Huang, Y. Line Spacing Effect on the Giant Magnetoimpedance Behavior of Microribbon Meanders: A Comparison of Theory and Experiment. Sens. Rev. 2024, 44. [Google Scholar]
- Beato-López, J.J.; Lete, N.; García-Arribas, A.; Gómez-Polo, C. Influence of the geometry on the performance of GMI in meander configuration. Sens. Actuators A 2022, 340, 113520. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, M.; Luo, L.; Wang, Z.; Li, H.; Sun, X.; Xu, J.; Sun, X.; Lei, C. Comparison of magnetoimpedance behaviors in meander CoFeNiSiB amorphous ribbon for deformation sensing applications. J. Phys. Condens. Matter 2023, 36, 125802. [Google Scholar] [CrossRef] [PubMed]
- Bukreev, D.A.; Derevyanko, M.S.; Semirov, A.V. Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure. Sensors 2023, 23, 8283. [Google Scholar] [CrossRef]
- Zhao, C.; Pan, L.; Li, X.; Ma, L.; Liu, Q.; Wang, J. Optimization of magnetoimpedance effect in Co-based ribbon by laser patterning for sensor arrays application. J. Phys. D Appl. Phys. 2018, 51, 045005. [Google Scholar] [CrossRef]
- Yang, Z.; Lei, J.; Lei, C.; Zhou, Y.; Wang, T. Effect of magnetic field annealing and size on the giant magnetoimpedance in micro-patterned Co-based ribbon with a meander structure. Appl. Phys. A 2014, 116, 1847–1851. [Google Scholar] [CrossRef]
- Yang, Z.; Chlenova, A.A.; Golubeva, E.V.; Volchkov, S.O.; Guo, P.; Shcherbinin, S.V.; Kurlyandskaya, G.V. Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application. Sensors 2019, 19, 2468. [Google Scholar] [CrossRef] [PubMed]
- Taysioglu, A.A.; Peksoz, A.; Kaya, Y.; Derebasi, N.; Irez, G.; Kaynak, G. GMI effect in CuO coated Co-based amorphous ribbons. J. Alloys Compd. 2009, 487, 38–41. [Google Scholar] [CrossRef]
- Taysioglu, A.A.; Kaya, Y.; Peksoz, A.; Akay, S.K.; Derebasi, N.; Irez, G.; Kaynak, G. Giant Magneto–Impedance Effect in Thin Zinc Oxide Coated on Co-Based (2705 X) Amorphous Ribbons. IEEE Trans. Magn. 2010, 46, 405–407. [Google Scholar] [CrossRef]
- Peksoz, A.; Kaya, Y.; Taysioglu, A.A.; Derebasi, N.; Kaynak, G. Giant magneto-impedance effect in diamagnetic organic thin film coated amorphous ribbons. Sens. Actuators A 2010, 159, 69–72. [Google Scholar] [CrossRef]
- Laurita, N.; Chaturvedi, A.; Bauer, C.; Jayathilaka, P.; Leary, A.; Miller, C.; Phan, M.-H.; McHenry, M.E.; Srikanth, H. Enhanced giant magnetoimpedance effect and field sensitivity in Co-coated soft ferromagnetic amorphous ribbons. J. Appl. Phys. 2011, 109, 07C706. [Google Scholar] [CrossRef]
- Ruiz, A.; Mukherjee, D.; Devkota, J.; Hordagoda, M.; Witanachchi, S.; Mukherjee, P.; Srikanth, H.; Phan, M.H. Enhanced giant magneto-impedance effect in soft ferromagnetic amorphous ribbons with pulsed laser deposition of cobalt ferrite. J. Appl. Phys. 2013, 113, 17A323. [Google Scholar] [CrossRef]
- Mukherjee, D.; Devkota, J.; Ruiz, A.; Hordagoda, M.; Hyde, R.; Witanachchi, S.; Mukherjee, P.; Srikanth, H.; Phan, M.H. Impacts of amorphous and crystalline cobalt ferrite layers on the giant magneto-impedance response of a soft ferromagnetic amorphous ribbon. J. Appl. Phys. 2014, 116, 123912. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Stojak, K.; Laurita, N.; Mukherjee, P.; Srikanth, H.; Phan, M.-H. Enhanced magnetoimpedance effect in Co-based amorphous ribbons coated with carbon nanotubes. J. Appl. Phys. 2012, 111, 07E507. [Google Scholar] [CrossRef]
- Jamilpanah, L.; Azadian, S.; e Gharehbagh, J.S.; Jahromi, S.H.; Sheykhifard, Z.; Hosseinzadeh, S.; Erfanifam, S.; Hajiali, M.; Tehranchi, M.M.; Mohseni, S.M. Electrophoretic deposition of graphene oxide on magnetic ribbon: Toward high sensitive and selectable magnetoimpedance response. Appl. Surf. Sci. 2018, 447, 423–429. [Google Scholar] [CrossRef]
- Yang, C.; Guo, Y.B.; Long, B.Y.; Jia, C.L.; Li, X.; Xie, W.H.; Zhao, Z.J. Enhanced giant magnetoimpedance effect in FINEMET/TiO2 composite ribbons. J. Mater. Sci. Mater. Electron. 2022, 33, 2744–2752. [Google Scholar] [CrossRef]
- Sun, X.; Du, J.; Zhu, Z.; Wang, J.; Liu, Q. Enhanced GMI effect in NiZn-ferrite-modified Fe-based amorphous ribbons. Appl. Phys A 2015, 119, 1277–1281. [Google Scholar] [CrossRef]
- Guo, Y.B.; Zou, J.T.; Li, X.; Xie, W.H.; Zhao, Z.J. Magnetic properties and giant magnetoimpedance effect of FINEMET/Fe50Pt50 composite ribbons. J. Magn. Magn. Mater. 2020, 513, 167080. [Google Scholar] [CrossRef]
- Guo, Y.B.; Ma, L.; Yang, C.; Jia, C.L.; Li, X.; Xie, W.H.; Zhao, Z.J. Exchange coupling and dipolar interactions in FINEMET/Fe50Pd50 composites ribbons. J. Magn. Magn. Mater. 2021, 530, 167948. [Google Scholar] [CrossRef]
- Jia, C.L.; Guo, Y.B.; Wang, D.; Yang, C.; Li, X.; Xie, W.H.; Shen, G.T.; Zhao, Z.J. Magnetic properties and giant magneto-impedance effect of FINEMET/IGZO composite ribbons. J. Magn. Magn. Mater. 2022, 544, 168662. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, T.; Wang, T.; Wang, F.; Shi, W. Giant magnetoimpedance effect in Fe75.5Cu1Nb3Si13.5B7 ribbon/FeGa film composite. J. Magn. Magn. Mater. 2016, 417, 37–41. [Google Scholar] [CrossRef]
- Dadsetan, A.; Kashi, M.A.; Mohseni, S.M. ZnO thin layer/Fe-based ribbon/ZnO thin layer sandwich structure: Introduction of a new GMI optimization method. J. Magn. Magn. Mater. 2020, 493, 165697. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, J.; Shu, X.; Song, Y.; Zhao, Z. Enhanced giant magneto-impedance effects in sandwich FINEMET/rGO/FeCo composite ribbons. Appl. Surf. Sci. 2021, 545, 149021. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Wang, D.; Xu, W.; Li, Y.; Li, K.; Wang, Z.; Zhao, Z. Giant magnetoimpedance effect and dipolar interactions of FINEMET/IGZO/CoFeSiB composite ribbons. Compos. Interfaces 2023, 30, 1035–1043. [Google Scholar] [CrossRef]
- Guo, Y.B.; Wang, D.; Wang, Z.M.; Ma, L.; Zhao, Z.J. Asymmetric magnetoimpedance effect and dipolar interactions of FINEMET/SiO2/FePd composite ribbons. Chin. Phys. B. 2023, 32, 070703. [Google Scholar] [CrossRef]
- Guo, Y.B.; Li, X.; Xie, W.H.; Yang, C.; Jia, C.L.; Ma, L.; Zhao, Z.J. Enhanced asymmetric giant magneto-impedance effect and linearity in sandwich FePd/FINEMET/FePd composite ribbons. J. Magn. Magn. Mater. 2022, 543, 168597. [Google Scholar] [CrossRef]
- Pan, H.L.; Li, X.; Zhang, Q.; Wang, J.T.; Xie, W.H.; Zhao, Z.J. Dipole–dipole interaction in electronic article surveillance system. J. Phys. D Appl. Phys. 2017, 50, 305002. [Google Scholar] [CrossRef]
- Jen, S.U.; Tsai, T.L.; Kuo, P.C.; Chi, W.L.; Cheng, W.C. Magnetostrictive and structural properties of FeCoGa films. J. Appl. Phys. 2010, 107, 013914. [Google Scholar] [CrossRef]
- Golubeva, E.V.; Chlenova, A.A.; Stepanova, E.A.; Kurlyandskaya, G.V. Magnetic properties and giant magnetoimpedance of surface modified Co-based amorphous ribbons with carbon covering. In EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 185, p. 10001. [Google Scholar]
- Estevez, D.; Zhao, Y.; Wang, Y.; Qin, F.; Peng, H.X. Optimizing magnetoimpedance of amorphous microwires by nanocarbon-induced magnetic anisotropy. J. Magn. Magn. Mater. 2020, 502, 166527. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Liu, M.; Sun, X. Non-Contact Current Sensing System Based on the Giant Magnetoimpedance Effect of CoFeNiSiB Amorphous Ribbon Meanders. Micromachines 2024, 15, 161. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Shima, T.; Uetake, H.; Yabukami, S. Magneto-Impedance of Micromachined Thin Films Less Than 100 um in Length. IEEE Magn. Lett. 2016, 7, 6508105. [Google Scholar] [CrossRef]
- Nakai, T. Magnetic domain transition of adjacent narrow thin film strips with inclined uniaxial magnetic anisotropy. Micromachines 2020, 11, 279. [Google Scholar] [CrossRef]
Magnetic and Physical Properties | |||
---|---|---|---|
Brand Name | Hebei King Do | Metglas | Jiangxi Dayou |
Saturation induction (T) | >0.55 | 0.5 | 0.58 |
Curie temperature (°C) | 205 | 200 | 250 |
Maximum permeability (µ) | >1,200,000 | 1,000,000 | >1,200,000 |
Coercive force (A/m) | <2.0 | 2 | 0.3 |
Density (g/cm3) | 8.5 | 7.59 | 7.25 |
Crystallization temperature (°C) | 550 | 550 | 520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Liu, M.; Chen, J.; Sun, X.; Lei, C.; Shen, Y.; Wang, Z.; Zhu, M.; Meng, Z. Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications. Sensors 2024, 24, 2961. https://doi.org/10.3390/s24102961
Yang Z, Liu M, Chen J, Sun X, Lei C, Shen Y, Wang Z, Zhu M, Meng Z. Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications. Sensors. 2024; 24(10):2961. https://doi.org/10.3390/s24102961
Chicago/Turabian StyleYang, Zhen, Mengyu Liu, Jingyuan Chen, Xuecheng Sun, Chong Lei, Yuanwei Shen, Zhenbao Wang, Mengjiao Zhu, and Ziqin Meng. 2024. "Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications" Sensors 24, no. 10: 2961. https://doi.org/10.3390/s24102961
APA StyleYang, Z., Liu, M., Chen, J., Sun, X., Lei, C., Shen, Y., Wang, Z., Zhu, M., & Meng, Z. (2024). Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications. Sensors, 24(10), 2961. https://doi.org/10.3390/s24102961