Assessing the Effect of Data Quality on Distance Estimation in Smartphone-Based Outdoor 6MWT
<p>General overview of the research.</p> "> Figure 2
<p>(<b>a</b>) Example of conventional 6MWT. (<b>b</b>) Example of unconventional 6MWT.</p> "> Figure 3
<p>Example of a 6MWT reported on a map. It is visible how some positions are not likely to belong to the actual walked path. In red are samples that are eliminated from the pre-processing filters; in green are samples considered for further analysis.</p> "> Figure 4
<p>Time update (<b>a</b>) and measurement update (<b>b</b>) equations.</p> "> Figure 5
<p>Frequency histogram of the 6MWD reference measurement for Oxford and Malmö tests.</p> "> Figure 6
<p>Schema representing the dataset usage across the following two main aspects of this research: distance and data quality estimation.</p> "> Figure 7
<p>Mean absolute difference, in percentage, between ground truth 6MWD and the one computed by multiple distance estimation algorithms, with and without pre-processing. The error is capped at 100%.</p> "> Figure 8
<p>Absolute percentage error for multiple algorithms and recording types of Malmö tests. Data were filtered and resampled except for QSS and baseline algorithms, which were only filtered. The error is capped at 80%.</p> "> Figure 9
<p>Point-biserial correlation coefficients and KS statistic of the error-based (Oxford only) and user-based (Oxford and Malmö) analyses between features and respective targets. Only statistically significant results (<span class="html-italic">p</span> < 0.05) are shown.</p> "> Figure 10
<p>Correlation matrix of the selected features.</p> "> Figure 11
<p>Classification results after feature selection and collinearity reduction.</p> "> Figure 12
<p>Features odds ratio in error-based and user-based classification of a 6MWT.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset
3.2. Data Pre-Processing and Filtering
- If the sample does not include a value for the altitude. This happens when the position is not computed using satellites, as mobile operating systems also make use of cellular network triangulation or WiFi networks to estimate position, while useful in many use cases, these techniques give less accurate positions than GNSS and were thus excluded;
- If the confidence interval estimated by the operating system was above 25 m. This threshold was chosen as a compromise between accuracy (the lower the confidence interval, the more accurate the measurement is) and availability of samples (a higher confidence interval implies that fewer samples are discarded). Related to this, the app would only allow the test to start after at least one sample is received with a confidence interval below 15 m, to ensure that the GNSS system has achieved a strong “lock” on the signal transmitted by satellites. For each additional satellite being included in the signal, the confidence interval becomes reduced. A compromise between desired accuracy and waiting time was chosen as 15 m;
- If the average acceleration magnitude is below 0.5 m/s2. This indicates that the user could be still. Thus, if the sample is included, even small errors in the position would be added to the computation of the distance, even if no additional distance was actually walked. The threshold was chosen empirically from the data collected by the researchers, in particular, informed by the “stop and go” recordings. The value was selected so that the filtering is conservative and excludes only samples that correspond to non-walking segments;
- If the difference in steps between two consecutive points is zero. This indicates that there is no movement, and follows the same logic as the case above;
- If the time difference between two consecutive points is less or equal to zero. This can happen when the system occasionally returns old values, particularly when the visibility of the satellites is lost, and the operating system resorts to sending the last known location;
- If the speed computed between two consecutive points is above 5 m/s. This threshold was chosen as it is substantially higher than a human walking speed [27], very unlikely to happen in a 6MWT.
3.3. Algorithms for Walked Distance Estimation
- x: State vector;
- Q: Process noise covariance;
- A: State transition matrix;
- B: Control matrix;
- P: Estimate covariance;
- R: Measurement covariance;
- H: Observation matrix;
- K: Kalman gain;
- z: Measurements vector.
3.4. Data Quality Estimation
3.4.1. Features Extraction
3.4.2. Features Validity
3.4.3. Feature Selection and Classification
4. Results
4.1. Walked Distance Estimation
4.2. Data Quality Estimation
4.2.1. Feature Validity
4.2.2. Feature Selection
4.2.3. Classification Results
5. Discussion
5.1. Walked Distance Estimation
5.2. Estimating the Quality of Distance Estimation
5.3. Limitations and Future Works
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Oxford Tests #107 [m] | Conventional Oxford #55 [m] | Unconventional Oxford #52 [m] | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | |
Alpha-beta | 182.56 (891.15) | 7650.71 | −1902.26, 1620.61 | 54.66 (100.97) | 608.05 | −251.95, 162.88 | 317.84 (1260.05) | 7650.71 | −2744.93, 2259.59 |
Kalman 1D | 110.24 (276.72) | 2688.59 | −651.12, 442.88 | 52.83 (129.96) | 970.34 | −307.08, 205.63 | 170.96 (364.05) | 2688.59 | −883.32, 562.13 |
Kalman 2D | 323.2 (981.03) | 8643.36 | −2245.32, 1602.83 | 129.44 (363.01) | 1985.54 | −840.76, 583.09 | 528.15 (1326.37) | 8643.36 | −3127.08, 2077.57 |
Kalman smoothing | 92.27 (233.31) | 1879.98 | −477.8, 504.33 | 21.7 (32.89) | 189.78 | −81.29, 72.1 | 166.91 (316.27) | 1879.98 | −665.92, 730.23 |
QSS | 49.11 (81.24) | 407.72 | −128.71, 208.75 | 12.51 (12.21) | 45.89 | −30.63, 36.83 | 87.82 (102.51) | 407.72 | −135.37, 293.51 |
Baseline | 152.48 (764.22) | 6293.09 | −1621.68, 1402.87 | 44.02 (117.86) | 742.81 | −271.28, 203.9 | 267.19 (1077.72) | 6293.09 | −2333.84, 1954.86 |
All Tests #169 [%] | Conventional All #77 [%] | Unconventional All #92 [%] | |||||||
Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | |
Alpha-beta | 31.75 (159.6) | 1877.98 | −337.74, 294.47 | 12.75 (18.9) | 116.49 | −50.11, 27.43 | 47.66 (214.32) | 1877.98 | −456.48, 395.98 |
Kalman 1D | 22.49 (34.41) | 326.29 | −90.27, 48.41 | 15.47 (28.18) | 157.22 | −70.72, 40.47 | 28.36 (37.87) | 326.29 | −103.55, 51.98 |
Kalman 2D | 2102.78 (19,631.66) | 230,418.77 | −40,580.23, 36,376.19 | 46.43 (128.49) | 819.01 | −298.26, 205.57 | 3823.85 (26,484.93) | 230,418.8 | −55,733.38, 48,088.31 |
Kalman smoothing | 20.14 (41.52) | 446.95 | −91.58, 89.27 | 9.76 (13.37) | 55.68 | −36.43, 21.52 | 28.83 (53.4) | 446.95 | −114.55, 122.79 |
QSS | 11.32 (14.98) | 77.35 | −26.79, 41.2 | 3.53 (4.27) | 30 | −11.84, 9.35 | 17.84 (17.43) | 77.35 | −25.82, 54.36 |
Baseline | 26.65 (143.83) | 1719.57 | −301.21, 268.63 | 10.41 (21.07) | 138.58 | −51.56, 33.64 | 40.23 (192.94) | 1719.57 | −406.2, 361.36 |
Error-Based Analysis | User-Based Analysis | ||||||
---|---|---|---|---|---|---|---|
Feature | PB | Feature | KS | Feature | PB | Feature | KS |
curve_mean | 0.55 | curve_mean | 0.52 | deltaheading_mean | 0.60 | deltaheading_iqr | 0.73 |
curve_std | 0.54 | curve_std | 0.49 | deltaheading_iqr | 0.55 | deltaheading_mean | 0.67 |
curve_iqr | 0.54 | curve_iqr | 0.48 | curve_std | 0.54 | deltaheading_median | 0.62 |
deltaheading_iqr | 0.52 | heading_sampen | 0.48 | heading_std | 0.49 | curve_std | 0.62 |
curve_median | 0.47 | deltaheading_median | 0.48 | deltaheading_std | 0.47 | curve_mean | 0.62 |
deltaheading_mean | 0.46 | deltaheading_iqr | 0.47 | deltaheading_median | 0.47 | curve_iqr | 0.54 |
deltaheading_median | 0.44 | curve_median | 0.44 | curve_mean | 0.46 | curve_median | 0.52 |
heading_sampen | 0.35 | heading_acflag | 0.42 | heading_acfpeak | 0.43 | heading_iqr | 0.50 |
deltaheading_sampen | 0.32 | speed_iqr | 0.41 | curve_iqr | 0.41 | heading_std | 0.48 |
deltaheading_std | 0.25 | deltaheading_mean | 0.40 | heading_iqr | 0.41 | deltaheading_sampen | 0.46 |
speed_median | 0.25 | deltaheading_std | 0.37 | deltaheading_sampen | 0.38 | deltaheading_std | 0.46 |
speed_mean | 0.24 | deltaheading_sampen | 0.35 | heading_sampen | 0.38 | speed_iqr | 0.46 |
curve_acfpeak | 0.22 | curve_acflag | 0.33 | speed_mean | 0.36 | heading_sampen | 0.44 |
heading_acfpeak | 0.22 | speed_sampen | 0.32 | curve_median | 0.36 | speed_mean | 0.40 |
curve_acflag | 0.21 | fs_acfpeak | 0.31 | speed_median | 0.35 | heading_acfpeak | 0.39 |
curve_sampen | 0.31 | speed_sampen | 0.29 | speed_median | 0.39 | ||
speed_acfpeak | 0.30 | speed_iqr | 0.29 | deltaheading_acfpeak | 0.38 | ||
heading_mean | 0.30 | heading_acflag | 0.28 | heading_mean | 0.37 | ||
speed_std | 0.29 | speed_acfpeak | 0.24 | heading_median | 0.36 | ||
heading_median | 0.29 | deltaheading_acfpeak | 0.22 | heading_acflag | 0.33 | ||
deltaheading_acfpeak | 0.29 | quality_acflag | 0.22 | speed_std | 0.28 | ||
speed_median | 0.27 | curve_sampen | 0.21 | speed_sampen | 0.28 | ||
quality_acflag | 0.25 | ||||||
quality_std | 0.24 | ||||||
curve_sampen | 0.23 | ||||||
crows_std | 0.22 | ||||||
speed_acfpeak | 0.22 | ||||||
quality_acfpeak | 0.22 | ||||||
quality_sampen | 0.21 | ||||||
speed_acflag | 0.21 |
References
- Koju, B.; Chaudhary, S.; Shrestha, A.; Joshi, L.R. Cardio-respiratory fitness in medical students by queen’s college step test: A cross-sectional study. J. Lumbini Med. Coll. 2019, 7, 29–33. [Google Scholar] [CrossRef]
- Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the ‘timed up and go’test: More than meets the eye. Gerontology 2011, 57, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.F.; Kiely, D.K.; Leveille, S.G.; Herman, S.; Huynh, C.; Fielding, R.; Frontera, W. The 6-minute walk test in mobility-limited elders: What is being measured? J. Gerontol. Ser. Biol. Sci. Med. Sci. 2002, 57, M751–M756. [Google Scholar] [CrossRef] [PubMed]
- Bautmans, I.; Lambert, M.; Mets, T. The six-minute walk test in community dwelling elderly: Influence of health status. BMC Geriatr. 2004, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Enright, P.L. The six-minute walk test. Respir. Care 2003, 48, 783–785. [Google Scholar] [PubMed]
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Conrow, L.; Röcke, C.; Chaix, B.; Weibel, R.; Perchoux, C. Advances and challenges in sensor-based research in mobility, health, and place. Health Place 2023, 79, 102972. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.; Rens, N.; Savage, D.; Nielsen-Bowles, H.; Triggs, D.; Talgo, J.; Gandhi, N.; Gutierrez, S.; Gutierrez, S.; Aalami, O. Reliability and repeatability of a smartphone-based 6-min walk test as a patient-centred outcome measure. Eur. Heart J. Digit. Health 2021, 2, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Pires, I.M.; Denysyuk, H.V.; Villasana, M.V.; Sá, J.; Marques, D.L.; Morgado, J.F.; Albuquerque, C.; Zdravevski, E. Development technologies for the monitoring of six-minute walk test: A systematic review. Sensors 2022, 22, 581. [Google Scholar] [CrossRef]
- Paziewski, J. Recent advances and perspectives for positioning and applications with smartphone GNSS observations. Meas. Sci. Technol. 2020, 31, 091001. [Google Scholar] [CrossRef]
- Stienen, M.N.; Gautschi, O.P.; Staartjes, V.E.; Maldaner, N.; Sosnova, M.; Ho, A.L.; Veeravagu, A.; Desai, A.; Zygourakis, C.C.; Park, J.; et al. Reliability of the 6-minute walking test smartphone application. J. Neurosurg. Spine 2019, 31, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Zangenehnejad, F.; Gao, Y. GNSS smartphones positioning: Advances, challenges, opportunities, and future perspectives. Satell. Navig. 2021, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Basso, M.; Martinelli, A.; Morosi, S.; Sera, F. A real-time GNSS/PDR navigation system for mobile devices. Remote Sens. 2021, 13, 1567. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Y.; Chen, C.; Jia, J.; Sun, H.; Wang, T.; Hyyppä, J. Smartphone PDR/GNSS Integration via Factor Graph Optimization for Pedestrian Navigation. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Y.; Chen, C.; Hyyppä, J. Walking Gaits Aided Mobile GNSS for Pedestrian Navigation in Urban Areas. IEEE Internet Things J. 2023, 11, 8499–8510. [Google Scholar] [CrossRef]
- Shah, V.V.; Curtze, C.; Sowalsky, K.; Arpan, I.; Mancini, M.; Carlson-Kuhta, P.; El-Gohary, M.; Horak, F.B.; McNames, J. Inertial Sensor Algorithm to Estimate Walk Distance. Sensors 2022, 22, 1077. [Google Scholar] [CrossRef] [PubMed]
- Wevers, L.; Kwakkel, G.; van de Port, I. Is outdoor use of the six-minute walk test with a global positioning system in stroke patients’ own neighbourhoods reproducible and valid? J. Rehabil. Med. 2011, 43, 1027–1031. [Google Scholar] [PubMed]
- Salvi, D.; Poffley, E.; Orchard, E.; Tarassenko, L. The mobile-based 6-minute walk test: Usability study and algorithm development and validation. JMIR mHealth uHealth 2020, 8, e13756. [Google Scholar] [CrossRef]
- Salvi, D.; Poffley, E.; Tarassenko, L.; Orchard, E. App-based versus standard six-minute walk test in pulmonary hypertension: Mixed methods study. JMIR mHealth uHealth 2021, 9, e22748. [Google Scholar] [CrossRef]
- Ata, R.; Gandhi, N.; Rasmussen, H.; El-Gabalawy, O.; Gutierrez, S.; Ahmad, A.; Suresh, S.; Ravi, R.; Rothenberg, K.; Aalami, O. Clinical validation of smartphone-based activity tracking in peripheral artery disease patients. Npj Digit. Med. 2018, 1, 66. [Google Scholar] [CrossRef]
- Ata, R.; Gandhi, N.; Rasmussen, H.; El-Gabalawy, O.; Agrawal, A.; Kongara, S.; Majeed, M.; Aalami, O. IP225 VascTrac: A study of peripheral artery disease via smartphones to improve remote disease monitoring and postoperative surveillance. J. Vasc. Surg. 2017, 65, 115S–116S. [Google Scholar] [CrossRef]
- Ziegl, A.; Rzepka, A.; Kastner, P.; Vinatzer, H.; Edegger, K.; Hayn, D.; Prescher, S.; Möller, V.; Schreier, G. mHealth 6-minute walk test–accuracy for detecting clinically relevant differences in heart failure patients. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; IEEE: New York, NY, USA, 2021; pp. 7095–7098. [Google Scholar]
- Ogris, M.; Edegger, K.; Rzepka, A.; Ziegl, A.; Schreier, G. Improved Global Navigation Satellite System filtering methods for the mobile six-minute walk test. In Current Directions in Biomedical Engineering; De Gruyter: Berlin, Germany, 2022; Volume 8, pp. 221–224. [Google Scholar]
- Van Oirschot, P.; Heerings, M.; Wendrich, K.; Den Teuling, B.; Dorssers, F.; Van Ee, R.; Martens, M.B.; Jongen, P.J. A two-minute walking test with a smartphone app for persons with multiple sclerosis: Validation study. JMIR Form. Res. 2021, 5, e29128. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Petovello, M.G. Measuring GNSS multipath distributions in urban canyon environments. IEEE Trans. Instrum. Meas. 2014, 64, 366–377. [Google Scholar]
- Timed Walk App. Available online: https://dariosalvi78.github.io/TimedWalkApp/index.html (accessed on 15 January 2024).
- Alves, F.; Cruz, S.; Ribeiro, A.; Bastos Silva, A.; Martins, J.; Cunha, I. Walkability index for elderly health: A proposal. Sustainability 2020, 12, 7360. [Google Scholar] [CrossRef]
- Painter, J.H.; Kerstetter, D.; Jowers, S. Reconciling Steady-State Kalman and Alpha-Beta Filter Design. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 986–991. [Google Scholar] [CrossRef]
- Sadli, R. Object Tracking: Simple Implementation of Kalman Filter in Python. 2020. Available online: https://machinelearningspace.com/object-tracking-python/ (accessed on 15 January 2024).
- Sadli, R. Object Tracking: 2-D Object Tracking Using Kalman Filter in Python. 2020. Available online: https://machinelearningspace.com/2d-object-tracking-using-kalman-filter/ (accessed on 15 January 2024).
- Deep, A.; Mittal, M.; Mittal, V. Application of Kalman Filter in GPS Position Estimation. In Proceedings of the 2018 IEEE 8th Power India International Conference (PIICON), Kurukshetra, India, 10–12 December 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ashok Kumar, N.; Suresh, C.; Sasibhushana Rao, G. Extended Kalman filter for GPS receiver position estimation. In Intelligent Engineering Informatics: Proceedings of the 6th International Conference on FICTA, Singapore, 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 481–488. [Google Scholar]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; Department of Computer Science University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 1995. [Google Scholar]
- Kalata, P.R. The tracking index: A generalized parameter for α-β and α-β-γ target trackers. IEEE Trans. Aerosp. Electron. Syst. 1984, AES-20, 174–182. [Google Scholar] [CrossRef]
- Gray, J.; Murray, W. A derivation of an analytic expression for the tracking index for the alpha-beta-gamma filter. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 1064–1065. [Google Scholar] [CrossRef]
- Byron, M.Y.; Shenoy, K.V.; Sahani, M. Derivation of Kalman Filtering and Smoothing Equations; Technical Report; Stanford University: Stanford, CA, USA, 2004. [Google Scholar]
- Wilhelm, F. Handling GPS Data with Python. 2016. Available online: https://github.com/FlorianWilhelm/gps_data_with_python/blob/master/notebooks/4-pykalman.ipynb (accessed on 15 January 2024).
- Government, U. GPS Accuracy. Available online: https://www.gps.gov/systems/gps/performance/accuracy/ (accessed on 15 January 2024).
- Tate, R.F. Correlation between a discrete and a continuous variable. Point-biserial correlation. Ann. Math. Stat. 1954, 25, 603–607. [Google Scholar] [CrossRef]
- Chan, W.L.; Pin, T.W. Reliability, validity and minimal detectable change of 2-minute walk test, 6-minute walk test and 10-meter walk test in frail older adults with dementia. Exp. Gerontol. 2019, 115, 9–18. [Google Scholar] [CrossRef]
- Ries, J.D.; Echternach, J.L.; Nof, L.; Gagnon Blodgett, M. Test-retest reliability and minimal detectable change scores for the timed “up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys. Ther. 2009, 89, 569–579. [Google Scholar]
- Wise, R.A.; Brown, C.D. Minimal clinically important differences in the six-minute walk test and the incremental shuttle walking test. COPD J. Chronic Obstr. Pulm. Dis. 2005, 2, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef]
- Senaviratna, N.; A Cooray, T. Diagnosing multicollinearity of logistic regression model. Asian J. Probab. Stat. 2019, 5, 1–9. [Google Scholar] [CrossRef]
- Midi, H.; Sarkar, S.K.; Rana, S. Collinearity diagnostics of binary logistic regression model. J. Interdiscip. Math. 2010, 13, 253–267. [Google Scholar] [CrossRef]
- Stevens, N.T.; Steiner, S.H.; MacKay, R.J. Assessing agreement between two measurement systems: An alternative to the limits of agreement approach. Stat. Methods Med. Res. 2017, 26, 2487–2504. [Google Scholar] [CrossRef]
Characteristic of the Measurement | Computed Statistics |
---|---|
Curviness (curve) Point–Point Distance (crows) Speed (speed) Confidence (quality) Heading (heading) Delta Heading (delta heading) Delta Timestamp (fs) | Mean, Median, Standard Deviation, IQR, Autocorrelation 1st Peak Value Autocorrelation 1st Peak Lag Sample entropy |
Additional Features | |
samples (Accuracy > 15) (q_above_tr) % | |
samples (Speed > 4) (s_above_tr) % | N/A |
distance (unfiltered–filtered) |
Oxford Tests #107 [m] | Conventional Oxford #55 [m] | Unconventional Oxford #52 [m] | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | |
Alpha-beta | 39.04 (62.59) | 401.58 | −103.91, 161.94 | 14.09 (13.57) | 62.84 | −34.93, 40.86 | 65.44 (80.68) | 401.58 | −114.22, 227.35 |
Kalman 1D | 33.6 (52.71) | 384.24 | −117.25, 127.04 | 16.96 (15.35) | 64.25 | −48.67, 38.95 | 51.2 (69.76) | 384.24 | −151.75, 182.17 |
Kalman 2D | 36.09 (52.57) | 380.06 | −125.48, 124.49 | 21.22 (20.28) | 100.7 | −64.11, 44.03 | 51.83 (69.07) | 380.06 | −158.6, 177.79 |
Kalman smoothing | 43.5 (68.41) | 407.85 | −101.3, 178.32 | 13.37 (12.59) | 50.53 | −25.25, 40.37 | 75.36 (86.52) | 407.85 | −105.03, 247.53 |
QSS | 51.06 (81.65) | 413.27 | −116.16, 211.65 | 12.25 (11.73) | 45.89 | −22.22, 37.31 | 92.1 (101.46) | 413.27 | −111.8, 292.34 |
Baseline | 36.5 (58.64) | 396.86 | −106.95, 150.2 | 14.47 (14.94) | 85 | −42.34, 38.92 | 59.8 (76.05) | 396.86 | −120.18, 212.8 |
All Tests #169 [%] | Conventional All #77 [%] | Unconventional All #92 [%] | |||||||
Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | Mean (SD) | Max | LOA | |
Alpha-beta | 9.62 (12.91) | 80.7 | −23.2, 35.28 | 3.47 (3.16) | 14.68 | −8.79, 9.55 | 14.76 (15.48) | 80.7 | −25.42, 46.99 |
Kalman 1D | 8.94 (11.84) | 78.14 | −28.57, 29.57 | 4.06 (3.62) | 16.15 | −11.61, 9.2 | 13.03 (14.49) | 78.14 | −36.07, 39.94 |
Kalman 2D | 9.64 (12.01) | 78.08 | −31.07, 29.21 | 4.89 (4.34) | 19.47 | −14.31, 9.6 | 13.63 (14.64) | 78.08 | −38.94, 39.47 |
Kalman smoothing | 10.35 (13.29) | 77.04 | −23.34, 37.01 | 3.49 (3.46) | 21.83 | −9.47, 9.8 | 16.09 (15.56) | 77.04 | −24.08, 48.92 |
QSS | 11.77 (15.48) | 79.93 | −22.68, 42.68 | 3.04 (2.9) | 15.25 | −6.83, 9.06 | 19.07 (17.77) | 79.93 | −20.55, 55.42 |
Baseline | 9.12 (12.28) | 78.57 | −23.96, 33.21 | 3.55 (3.44) | 15.62 | −10.28, 8.92 | 13.79 (14.81) | 78.57 | −26.39, 44.52 |
Error-Based Analysis | ||||
---|---|---|---|---|
Low Error | High Error | |||
User-based analysis | Conventional | 43 | 12 | 22 |
Unconventional | 20 | 35 | 40 | |
Oxford | Malmö |
Error-Based Analysis | |||
---|---|---|---|
Original Features | VIF | Non-Collinear Features | VIF |
crows_median | 2.22 | crows_median+fs_iqr | 1.09 |
speed_iqr | 1.24 | speed_iqr | 1.19 |
heading_sampen | 1.30 | heading_sampen | 1.29 |
curve_iqr | 1.28 | curve_iqr | 1.25 |
fs_sampen | 1.63 | fs_sampen | 1.06 |
fs_iqr | 1.83 | ||
User-Based Analysis | |||
Original Features | VIF | Non-Collinear Features | VIF |
quality_sampen | 1.32 | quality_sampen | 1.07 |
curve_mean | 3.89 | heading_std | 1.23 |
curve_sampen | 3.20 | curve_mean+sampen | 1.36 |
heading_std | 1.34 | deltaheading_mean+iqr | 1.56 |
deltaheading_mean | 6.04 | ||
deltaheading_iqr | 5.17 |
Error-Based Analysis | User-Based Analysis | |||||
---|---|---|---|---|---|---|
LR | SVM | RF | LR | SVM | RF | |
Sensitivity | 0.69 | 0.66 | 0.63 | 0.91 | 0.95 | 0.87 |
Specificity | 0.82 | 0.83 | 0.82 | 0.95 | 0.95 | 0.90 |
F1-score | 0.67 | 0.66 | 0.63 | 0.93 | 0.95 | 0.89 |
Accuracy | 0.78 | 0.78 | 0.76 | 0.93 | 0.95 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caramaschi, S.; Olsson, C.M.; Orchard, E.; Molloy, J.; Salvi, D. Assessing the Effect of Data Quality on Distance Estimation in Smartphone-Based Outdoor 6MWT. Sensors 2024, 24, 2632. https://doi.org/10.3390/s24082632
Caramaschi S, Olsson CM, Orchard E, Molloy J, Salvi D. Assessing the Effect of Data Quality on Distance Estimation in Smartphone-Based Outdoor 6MWT. Sensors. 2024; 24(8):2632. https://doi.org/10.3390/s24082632
Chicago/Turabian StyleCaramaschi, Sara, Carl Magnus Olsson, Elizabeth Orchard, Jackson Molloy, and Dario Salvi. 2024. "Assessing the Effect of Data Quality on Distance Estimation in Smartphone-Based Outdoor 6MWT" Sensors 24, no. 8: 2632. https://doi.org/10.3390/s24082632