Using the Photo–Piezoelectric Effect of AuPt@BaTiO3 Oxidase Mimetics for Colorimetric Detection of GSH in Serum
<p>SEM image of (<b>a</b>) TiO<sub>2</sub>, (<b>b</b>–<b>c</b>) BaTiO<sub>3</sub> SUMs, and (<b>d</b>) AuPt@BaTiO<sub>3</sub> SUMs. (<b>e</b>–<b>i</b>) EDS mapping of the AuPt@BaTiO<sub>3</sub> SUMs. (<b>j</b>–<b>k</b>) HRTEM and TEM images of the AuPt@BaTiO<sub>3</sub> SUMs and (<b>l</b>–<b>p</b>) EDS mapping of the single AuPt@BaTiO<sub>3</sub> SUMs. Inset: schematic illustration of the detailed structure of the AuPt@BaTiO<sub>3</sub> SUMs.</p> "> Figure 2
<p>(<b>a</b>) Survey spectra of the AuPt@BaTiO<sub>3</sub> SUMs. (<b>b</b>–<b>f</b>) High−resolution XPS spectra for O 1s, Ba 3d, Ti 2p, Au 4f, and Pt 4f.</p> "> Figure 3
<p>(<b>a</b>) UV−vis spectra of different reaction systems. (<b>b</b>) UV−vis spectra under different gaseous conditions (Air, N<sub>2</sub>). (<b>c</b>) UV−vis spectra of different capture agents for the (AuPt@BaTiO<sub>3</sub> SUMs + TMB) system. (<b>d</b>) UV−vis spectra of the (AuPt@BaTiO<sub>3</sub> SUMs + TMB) system under different conditions (dark, light, ultrasound, light−ultrasound).</p> "> Figure 4
<p>(<b>a</b>) UV−vis absorbance of the detection system upon the addition of 0.5–80 μM GSH in the dark. (<b>b</b>) The calibration curve corresponds to GSH concentration. Inset: the corresponding photograph of the colored products for reaction with different GSH concentrations. Reaction conditions: 0.5 mM TMB, 0.28 mg mL<sup>−1</sup> AuPt@BaTiO<sub>3</sub> SUMs, 0.2 M Na<sub>2</sub>HPO<sub>4</sub>−CA buffer (pH = 4.0), 10 min and 20 °C. (<b>c</b>) UV−vis absorbance of the detection system upon the addition of 0.5–50 μM GSH under light–ultrasound. (<b>d</b>) The calibration curve corresponds to GSH concentration. Reaction conditions: 0.5 mM TMB, 0.28 mg mL<sup>−1</sup> AuPt@BaTiO<sub>3</sub> SUMs, 0.2 M Na<sub>2</sub>HPO<sub>4</sub>−CA buffer (pH = 4.0), 3 min, and 20 °C.</p> "> Figure 5
<p>Anti−interference experiments of the colorimetric detection of GSH (80 μM GSH, mixture, Cys, AA, Gly, Leu, Arg, Lys, Pro, Glu, L−His, K<sup>+</sup>, Na<sup>+</sup>).</p> "> Scheme 1
<p>(<b>a</b>) Schematic illustration of energy−band structures for Au@BaTiO<sub>3</sub> SUMs, Pt@BaTiO<sub>3</sub> SUMs, and AuPt@BaTiO<sub>3</sub> SUMs. (<b>b</b>) The photo−piezoelectric effect enhances the oxidase−like activity of the AuPt@BaTiO<sub>3</sub> SUMs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments
2.3. Synthesis of TiO2
2.4. Synthesis of BaTiO3 SUMs
2.5. Synthesis of AuPt@BaTiO3 SUMs
2.6. Catalytic Mechanism of Oxidase−like Activity
2.7. Photo−Piezoelectric Enhanced AuPt@BaTiO3 SUMs Oxidase−like Activity
2.8. Kinetic Analysis
2.9. Colorimetric Detection of GSH
3. Results
3.1. Characterization of the AuPt@BaTiO3 SUMs
3.2. Catalytic Mechanism of Oxidase−like Activity
3.3. Steady−State Kinetics
3.4. GSH Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.L.; Wang, J.; Zhao, C.L.; Zhou, F.J.; Yao, C.; Song, C. Ultra−fast colorimetric detection of glutathione by magnetic Fe NPs with peroxidase−like activity. Sens. Actuators B Chem. 2022, 361, 131750. [Google Scholar] [CrossRef]
- Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143–181. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, P.; Chen, Y.; Wu, Y.; Wei, J. Interfacial deposition of Ag nanozyme on metal−polyphenol nanosphere for SERS detection of cellular glutathione. Biosens. Bioelectron. 2023, 228, 115200. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, P.; Chen, H.; Zhu, X.; Zhang, Y.; Liu, M.; Yao, S. Picomolar glutathione detection based on the dual−signal self−calibration electrochemical sensor of ferrocene−functionalized copper metal−organic framework via solid−state electrochemistry of cuprous chloride. J. Colloid Interface Sci. 2022, 628, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Yan, J.; Zhu, Y.; Chen, H.Y.; Wu, C.Y.; Zhu, X.H.; Zhang, Y.Y.; Li, H.T.; Liu, M.L.; Yao, S.Z. Self−Cascade Nanoenzyme of Cupric Oxide Nanoparticles (CuO NPs) Induced In Situ Catalysis Formation of Polyelectrolyte as Template for the Synthesis of Near−Infrared Fluorescent Silver Nanoclusters and the Application in Glutathione Detection and Bioimaging. Anal. Chem. 2022, 94, 14642–14651. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, Y.; Hu, S.; Zhu, A.; Ying, Y.; Guo, X.; Wu, Y.; Wen, Y.; Yang, H. MnO(2) coated Au nanoparticles advance SERS detection of cellular glutathione. Biosens. Bioelectron. 2022, 215, 114388. [Google Scholar] [CrossRef]
- Xu, X.Y.; Sun, Q.J.; Ma, Y.M.; Jiang, X.X.; Niu, N.; Chen, L.G. Synthesis of KCl−doped lignin carbon dots nanoenzymes for colorimetric sensing glutathione in human serum. Sens. Actuators B Chem. 2022, 364, 131881. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Chen, J.; Que, M.D.; Yang, T.; Liu, Z.K.; Cai, W.H.; Yang, L.F.; Liu, X.W.; Li, Y.J.; Yang, X.F.; et al. Highly efficient piezoelectric field enhanced photocatalytic performance via in situ formation of BaTiO3 on Ti3C2Tx for phenolic compound degradation. Inorg. Chem. Front. 2022, 9, 4201–4215. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Ding, Y.; Zhang, Z.; Huang, T.; Zhang, Y.; Wan, X.; Wang, Z.L.; Li, L. Piezotronic Effect−Augmented Cu2–xO–BaTiO3 Sonosensitizers for Multifunctional Cancer Dynamic Therapy. ACS Nano. 2022, 16, 9304–9316. [Google Scholar] [CrossRef]
- An, X.; Kays, J.C.; Lightcap, I.V.; Ouyang, T.; Dennis, A.M.; Reinhard, B.M. Wavelength−Dependent Bifunctional Plasmonic Photocatalysis in Au/Chalcopyrite Hybrid Nanostructures. ACS Nano. 2022, 16, 6813–6824. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, J.Y.; Zhang, Y. Visible light assisted trace gaseous NO sensor with anti−humidity ability via LSPR enhancement effect. Sens. Actuators B Chem. 2022, 367, 132032. [Google Scholar] [CrossRef]
- Hu, J.Y.; Liu, X.; Zhang, J.W.; Gu, X.; Zhang, Y. Plasmon−activated NO2 sensor based on Au@MoS2 core−shell nanoparticles with heightened sensitivity and full recoverability. Sens. Actuators B Chem. 2023, 382, 133505. [Google Scholar] [CrossRef]
- Song, Y.J.; Wang, H.; Wang, Z.T.; Guo, B.B.; Jing, K.G.; Li, Y.J.; Wu, L. Selective Photocatalytic Synthesis of Haloanilines from Halonitrobenzenes over Multifunctional AuPt/Monolayer Titanate Nanosheet. ACS Catal. 2018, 8, 9656–9664. [Google Scholar] [CrossRef]
- Zheng, W.X.; Tang, Y.F.; Liu, Z.W.; Xing, G.X.; Zhao, K. Enhanced charge carrier separation by bi−piezoelectric effects based on pine needle−like BaTiO3/ZnO continuous nanofibers. J. Mater. Chem. A 2022, 10, 13544–13555. [Google Scholar] [CrossRef]
- Cheng, S.S.; Luo, Y.; Zhang, J.; Shi, R.; Wei, S.T.; Dong, K.J.; Liu, X.M.; Wu, S.L.; Wang, H.B. The highly effective therapy of ovarian cancer by Bismuth−doped oxygen−deficient BaTiO3 with enhanced sono−piezocatalytic effects. Chem. Eng. J. 2022, 442, 136380. [Google Scholar] [CrossRef]
- He, X.; Liu, J.Y.; Zhu, M.H.; Guo, Y.; Ren, Z.Q.; Li, X. Preparation of hierarchical rutile TiO2 microspheres as scattering centers for efficient dye−sensitized solar cells. Electrochim. Acta 2017, 255, 187–194. [Google Scholar] [CrossRef]
- Tan, X.F.; Yang, Q.L.; Sun, X.M.; Sun, P.; Li, H. PdIr aerogels with boosted peroxidase−like activity for a sensitive total antioxidant capacity colorimetric bioassay. ACS Appl. Mater. Interfaces 2022, 14, 10047–10054. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, R.Y.; Wang, L.Q.; Lan, X.F.; Sun, H.T.; Zhao, Y.; Wang, L.G. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int. J. Biol. Macromol. 2021, 172, 289–298. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.M.; Gao, L.Z.; Zhou, M.J.; Fan, K.L.; Tang, Y.; Xi, J.Q.; Bi, Y.H.; Tong, Z.; Gao, G.F.; et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase−like nanozymes. Nat. Protoc. 2018, 13, 1506–1520. [Google Scholar] [CrossRef]
- Hu, M.Z. −C.; Kurian, V.; Payzant, E.A.; Rawn, C.J.; Hunt, R.D. Wet−chemical synthesis of monodispersed barium titanate particles—Hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3. Powder Technology 2000, 110, 2–14. [Google Scholar] [CrossRef]
- Dutta, A.; Ouyang, J. Enhanced electrocatalytic performance on polymer−stabilized graphene decorated with alloy nanoparticles for ethanol oxidation reaction in alkaline media. Appl. Catal. B: Environ. 2014, 158–159, 119–128. [Google Scholar] [CrossRef]
- Kumar, P.; Thakur, U.K.; Alam, K.; Kar, P.; Kisslinger, R.; Zeng, S.; Patel, S.; Shankar, K. Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 2018, 137, 174–187. [Google Scholar] [CrossRef]
- Peng, F.; Yin, R.; Liao, Y.H.; Xie, X.; Sun, J.L.; Xia, D.H.; He, C. Kinetics and mechanisms of enhanced degradation of ibuprofen by piezo−catalytic activation of persulfate. Chem. Eng. J. 2020, 392, 123818. [Google Scholar] [CrossRef]
- Xu, J.B.; Zhao, T.S.; Liang, Z.X.; Zhu, L.D. Facile preparation of AuPt alloy nanoparticles from organometallic complex precursor. Chem. Mater. 2008, 20, 1688–1690. [Google Scholar] [CrossRef]
- Liu, Q.; Zhai, D.; Xiao, Z.D.; Tang, C.; Sun, Q.W.; Bowen, C.R.; Luo, H.; Zhang, D. Piezo−photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation. Nano Energy 2022, 92, 106702. [Google Scholar] [CrossRef]
- Zhou, X.F.; Wu, S.H.; Li, C.B.; Yan, F.; Bai, H.R.; Shen, B.; Zeng, H.R.; Zhai, J.W. Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high−efficiency catalytic oxidation. Nano Energy 2019, 66, 104127. [Google Scholar] [CrossRef]
- Cao, G.Q.; Deskins, N.A.; Yi, N. Carbon monoxide oxidation over copper and nitrogen modified titanium dioxide. Appl. Catal. B Environ. 2021, 285, 119748. [Google Scholar] [CrossRef]
- Xu, S.; Guo, L.; Sun, Q.; Wang, Z.L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. 2019, 29, 1808737. 29. [CrossRef]
- Jimenez−Calvo, P.; Munoz−Batista, M.J.; Isaacs, M.; Ramnarain, V.; Ihiawakrim, D.; Li, X.Y.; Munoz−Marquez, M.A.; Teobaldi, G.; Kociak, M.; Paineau, E. A compact photoreactor for automated H2 photoproduction: Revisiting the (Pd, Pt, Au)/TiO2 (P25) Schottky junctions. Chem. Eng. J. 2023, 459, 141514. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, J.; Ouyang, X.L.; Liao, Y.B.; Feng, H.P.; Yu, J.F.; Chen, L.; Lu, Y.T.; Yi, Y.Y.; Tang, L. Multifunctional MnCo@C yolk−shell nanozymes with smartphone platform for rapid colorimetric analysis of total antioxidant capacity and phenolic compounds. Biosens. Bioelectron. 2022, 216, 114652. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Zhao, Y.; Ding, Y.; Zhang, Z.; Jiang, T.; Wang, Z.L.; Li, L. Piezo−phototronic effect boosted catalysis in plasmonic bimetallic ZnO heterostructure with guided fermi level alignment. Mater. Today Nano 2022, 18, 100177. [Google Scholar] [CrossRef]
- Zheng, S.; Ding, B.; Qian, X.; Yang, Y.; Mao, L.; Zheng, S.; Zhang, J. High efficiency degradation of tetracycline and rhodamine B using Z−type BaTiO3/γ−Bi2O3 heterojunction. Sep. Purif. Technol. 2021, 278, 119666. [Google Scholar] [CrossRef]
- Aksoy, M.; Korkut, S.E.; Metin, O. AuPt alloy nanoparticles supported on graphitic carbon nitride: In situ synthesis and superb catalytic performance in the light−assisted hydrolytic dehydrogenation of ammonia borane. Appl. Surf. Sci. 2022, 602, 154286. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhu, L.Y.; Feng, P.; Dang, C.C.; Li, M.; Lu, H.L.; Gao, L.M. Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing. Sens. Actuators B Chem. 2022, 367, 132024. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Toi, S.; Ichikawa, S.; Hirai, T. Photocatalytic NH3 Splitting on TiO2 Particles Decorated with Pt−Au Bimetallic Alloy Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 1612–1620. [Google Scholar] [CrossRef]
- Li, X.J.; Chen, L.; Wang, J.F.; Zhang, J.Y.; Zhao, C.R.; Lin, H.J.; Wu, Y.; He, Y.M. Novel platinum−bismuth alloy loaded KTa0.5Nb0.5O3 composite photocatalyst for effective nitrogen−to−ammonium conversion. J. Colloid Interface Sci. 2022, 618, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ni, J.M.; Liang, Y.M.; Yang, B.Q.; Jia, F.F.; Song, S.X. Piezo−Photocatalytic Reduction of Au(I) by Defect−Rich MoS2 Nanoflowers for Efficient Gold Recovery from a Thiosulfate Solution. ACS Sustain. Chem. Eng. 2021, 9, 589–598. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Z.; Wu, M.; Liu, H.; Zhang, X.; Wang, Z.; Wang, Z.L.; Li, L. Enhanced Piezo−Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au−ZnO Nanorod Array. Small 2020, 16, 201907603. [Google Scholar] [CrossRef]
- Raji, R.; Gopchandran, K.G. Plasmonic photocatalytic activity of ZnO:Au nanostructures: Tailoring the plasmon absorption and interfacial charge transfer mechanism. J. Hazard. Mater. 2019, 368, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Xian, T.; Sun, X.; Di, L.; Sun, C.; Li, H.; Ma, C.; Yang, H. Enhancing the piezo−photocatalytic tetracycline degradation activity of BiOBr by the decoration of AuPt alloy nanoparaticles: Degradation pathways and mechanism investigation. Appl. Surf. Sci. 2023, 638, 158136. [Google Scholar] [CrossRef]
- Xu, Z.H.; Kibria, M.G.; AlOtaibi, B.; Duchesne, P.N.; Besteiro, L.V.; Gao, Y.; Zhang, Q.Z.; Mi, Z.T.; Zhang, P.; Govorov, A.O.; et al. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect? Appl. Catal. B Environ. 2018, 221, 77–85. [Google Scholar] [CrossRef]
- Xie, Y.X.; Yang, Y.; Muller, D.A.; Abruna, H.D.; Dimitrov, N.; Fang, J.Y. Enhanced ORR Kinetics on Au−Doped Pt−Cu Porous Films in Alkaline Media. ACS Catal. 2020, 10, 9967–9976. [Google Scholar] [CrossRef]
- Qiao, F.M.; Chen, L.J.; Li, X.N.; Li, L.F.; Ai, S.Y. Peroxidase−like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2014, 193, 255–262. [Google Scholar] [CrossRef]
- Gupta, P.K.; Son, S.E.; Venkatesan, J.; Seong, G.H. Cauliflower−like platinum nanostructures mediated photothermal and colorimetric dual−readout biosensor for sensitive cholesterol detection. Sens. Actuators B Chem. 2023, 386, 133741. [Google Scholar] [CrossRef]
- Ali, S.; Sikdar, S.; Basak, S.; Mondal, M.; Mallick, K.; Salman Haydar, M.; Ghosh, S.; Nath Roy, M. Assemble multi−enzyme mimic tandem Mn3O4@ g−C3N4 for augment ROS elimination and label free detection. Chem. Eng. J. 2023, 463, 142355. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, X.; Chen, H.; Wei, Y.; Yang, H.; Gu, Y. Ultrathin C3N4 nanosheets−based oxidase−like 2D fluorescence nanozyme for dual−mode detection of organophosphorus pesticides. J. Hazard. Mater. 2023, 451, 131171. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Y.; Wan, C.Q.; Wang, Y.X.; Shen, X.F.; Pang, Y.H. Bismuth−based metal−organic framework peroxidase−mimic nanozyme: Preparation and mechanism for colorimetric−converted ultra−trace electrochemical sensing of chromium ion. J. Hazard. Mater. 2023, 451, 131148. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jiao, L.; Yan, H.; Wu, Y.; Chen, L.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Glucose Oxidase−Integrated Metal−Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xia, Y.; Liu, Y.; Tang, Y.; Zhao, F.; Zeng, B. Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn3O4 nanozyme. Biosens. Bioelectron. 2022, 216, 114650. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.L.; Sanjay, S.T.; Zhou, W.; Brekken, R.A.; Kirken, R.A.; Li, X.J. Exploration of Nanoparticle−Mediated Photothermal Effect of TMB−H2O2 Colorimetric System and Its Application in a Visual Quantitative Photothermal Immunoassay. Anal. Chem. 2018, 90, 5930–5937. [Google Scholar] [CrossRef]
- Peng, D.; Yang, Y.; Que, M.; Ding, Y.; Wu, M.; Deng, X.; He, Q.; Ma, X.; Li, X.; Qiu, H. Partially oxidized MoS2 nanosheets with high water−solubility to enhance the peroxidase−mimic activity for sensitive detection of glutathione. Anal. Chim. Acta 2023, 1250, 340968. [Google Scholar] [CrossRef]
- Bian, B.; Liu, Q.Y.; Yu, S.T. Peroxidase mimetic activity of porphyrin modified ZnFe2O4/reduced graphene oxide and its application for colorimetric detection of H2O2 and glutathione. Colloid. Surface B 2019, 181, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Long, X.C.; Tu, Q.X.; Feng, J.; Zhang, X.H.; Feng, G.W.; Lei, L. Self−assembled, hemin−functionalized peptide nanotubes: An innovative strategy for detecting glutathione and glucose molecules with peroxidase−like activity. Nano Converg. 2023, 10, 1647. [Google Scholar] [CrossRef]
- Dou, Y.; Yang, R.; Xiao, Y.; Wu, J.; Qu, L.B.; Sun, Y.Q.; Li, Z.H. Teaching a fluorophore new tricks: Exploiting the light−driven organic oxidase nanozyme properties of thiazolothiazole for highly sensitive biomedical detection. Sens. Actuators B Chem. 2022, 354, 131226. [Google Scholar] [CrossRef]
- Narang, J.; Chauhan, N.; Jain, P.; Pundir, C.S. Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int. J. Biol. Macromol. 2012, 50, 672–678. [Google Scholar] [CrossRef]
- Wang, D.; Meng, Y.T.; Zhang, Y.; Wang, Q.; Lu, W.J.; Shuang, S.M.; Dong, C. A specific discriminating GSH from Cys/Hcy fluorescence nanosensor: The carbon dots−MnO2 nanocomposites. Sens. Actuators B Chem. 2022, 367, 132135. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.B.; Zhang, Z.; Liu, Y.; Chen, J.; Liu, J.; Du, P.Y.; Guo, H.X.; Lu, X.Q. MnO2 Nanospheres Assisted by Cysteine Combined with MnO2 Nanosheets as a Fluorescence Resonance Energy Transfer System for “Switch−on” Detection of Glutathione. Anal. Chem. 2021, 93, 9621–9627. [Google Scholar] [CrossRef]
- Yang, W.; Weng, C.Y.; Li, X.Y.; He, H.L.; Fei, J.W.; Xu, W.; Yan, X.Q.; Zhu, W.Y.; Zhang, H.S.; Zhou, X.M. A sensitive colorimetric sensor based on one−pot preparation of h−Fe3O4@ppy with high peroxidase−like activity for determination of glutathione and H2O2. Sens. Actuators B Chem. 2021, 338, 129844. [Google Scholar] [CrossRef]
- Jin, P.; Niu, X.Y.; Gao, Z.X.; Xue, X.Q.; Zhang, F.; Cheng, W.; Ren, C.L.; Du, H.Y.; Manyande, A.; Chen, H.L. Ultrafine platinum nanoparticles supported on covalent organic frameworks as stable and reusable oxidase−like catalysts for cellular glutathione detection. ACS Appl. Nano Mater. 2021, 4, 5834–5841. [Google Scholar] [CrossRef]
- Thulasinathan, B.; Ganesan, V.; Manickam, P.; Kumar, P.; Govarthanan, M.; Chinnathambi, S.; Alagarsamy, A. Simultaneous electrochemical determination of persistent petrogenic organic pollutants based on AgNPs synthesized using carbon dots derived from mushroom. Sci. Total Environ. 2023, 884, 163729. [Google Scholar] [CrossRef]
Materials | Substrate | Vmax (×10−7 M s−1) | Km (mM) | Reference |
---|---|---|---|---|
HRP | TMB | 1 | 0.43 | [43] |
CS@Pt NS | TMB | 6.524 | 0.49 | [44] |
3:3−Mn3O4@g−C3N4 | TMB | 1.645 | 0.343 | [45] |
PtPdNPs@g−C3N4 | TMB | 3.639 | 0.225 | [46] |
BiO−BDC−NH2 | TMB | 0.581 | 0.41 | [47] |
Fe−MOF | TMB | 0.56 | 2.6 | [48] |
DSMIP@Mn3O4 | TMB | 0.092 | 5.1 | [49] |
AuPt@BaTiO3 SUMs | TMB | 3.16 | 0.1218 | This work |
Materials | Methods | Linear Range (μM) | LOD (μM) | Detection Time (min) | Ref. |
---|---|---|---|---|---|
ox−MoS2 NSs | colorimetry | 0.5–5 | 0.276 | 60 | [51] |
Por−ZnFe2O4/rGO | colorimetry | 2–40 | 0.76 | 10 | [52] |
hemin−PNT | colorimetry | 1–35 | 0.51 | 10 | [53] |
TTz−Cl2+ | colorimetry | 1–17 | 0.47 | 15 | [54] |
AgNPs/C–MWCNT/PANI/Au | electrochemistry | 0.3–0.35 | 0.3 | − | [55] |
CDs−MnO2 NFs | fluorescence | 2–200 | 0.558 | 5 | [56] |
Cys−MnO2 nanospheres/MnO2 nanosheets | fluorescence | 5–50,150–800 | 2.96 | 15 | [57] |
AuPt@BaTiO3 SUMs | colorimetry | 0.5–50 | 0.225 | 3 | This work |
Sample | Conditions | Added (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
fetal bovine serum | light−ultrasound | 10 | 10.18 | 101.8 | 0.37 |
30 | 29.97 | 99.91 | 0.39 | ||
50 | 50.66 | 101.3 | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; He, Y.; Zhang, B.; Ma, Y.; Xu, R.; Zhao, M.; Cui, H. Using the Photo–Piezoelectric Effect of AuPt@BaTiO3 Oxidase Mimetics for Colorimetric Detection of GSH in Serum. Sensors 2024, 24, 2242. https://doi.org/10.3390/s24072242
Liao Y, He Y, Zhang B, Ma Y, Xu R, Zhao M, Cui H. Using the Photo–Piezoelectric Effect of AuPt@BaTiO3 Oxidase Mimetics for Colorimetric Detection of GSH in Serum. Sensors. 2024; 24(7):2242. https://doi.org/10.3390/s24072242
Chicago/Turabian StyleLiao, Yiquan, Yichang He, Bin Zhang, Ye Ma, Ruiqi Xu, Minggang Zhao, and Hongzhi Cui. 2024. "Using the Photo–Piezoelectric Effect of AuPt@BaTiO3 Oxidase Mimetics for Colorimetric Detection of GSH in Serum" Sensors 24, no. 7: 2242. https://doi.org/10.3390/s24072242