A Coupled Calibration Method for Dual Cameras-Projector System with Sub-Pixel Accuracy Feature Extraction
<p>Pixel coordinate errors. (<b>a</b>) Projector pixel coordinates of a certain pose. (<b>b</b>) Reprojection error distribution of different poses.</p> "> Figure 2
<p>DCP system.</p> "> Figure 3
<p>The pipeline of projector calibration. (<b>a</b>) Eight-step phase shift and Three-frequency heterodyne for phases unwrapping. (<b>b</b>) Create the orthogonal fringe map for feature extraction. (<b>c</b>) Extract the feature points on both right and left image. (<b>d</b>) Optimize the reprojection error.</p> "> Figure 4
<p>The process of detecting feature points.</p> "> Figure 5
<p>The relationship between projector and binocular camera.</p> "> Figure 6
<p>Experimental setup.</p> "> Figure 7
<p>The comparison results of polynomial fitting and general feature point extraction methods.</p> "> Figure 8
<p>Reprojection error distributions. (<b>a</b>) Separate calibration method (Left-SCP). (<b>b</b>) Separate calibration method (Right-SCP). (<b>c</b>) Coupled calibration method (ours).</p> "> Figure 9
<p>Comparison of ceramic sphere measurements. (<b>a</b>) Measured ceramic spheres. (<b>b</b>) 3D point cloud at different locations. (<b>c</b>) Measurement results of sphere A. (<b>d</b>) Measurement results of sphere B.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Camera Model and Projector Model
2.2. Phase Target
3. Calibration Method
3.1. Overview
- Step 1: Calibrate the intrinsic and extrinsic parameters of the two cameras;
- Step 2: Project two sets of fringe patterns, one horizontal and the other vertical, onto a white plane. Capture the images of these fringe patterns, respectively, with the two cameras calibrated in step 1;
- Step 3: Randomly change the poses of the white plane, then repeat step 1 and step 2 to obtain 17 groups of images. Each group contains 96 images; the left and right cameras correspond to 48 pictures each. For each camera, 8 vertical fringe patterns and 8 horizontal fringe patterns with three frequencies are need;
- Step 4: As shown in Figure 3a, for each group of images, calculate the absolute phase maps from the vertical and horizontal fringe patterns obtained by the binocular camera in DCP system;
- Step 5: Create the orthogonal fringe map for feature extraction as Figure 3b and extract the feature points on both right and left images as Figure 3c with the method given in Section 3.2. Compute the projector pixel coordinates and the world coordinates of each feature point with the method given in Section 3.2 and Section 3.3;
- Step 6: Estimate the intrinsic parameters and the distortion coefficients of the projector by optimizing the reprojection error with the Levenberg–Marquardt method as shown in Figure 3d.
3.2. Feature Points Extraction and Mapping
3.3. World Coordinates Calculation
3.4. Projector Parameters Estimation
4. Experiments and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCP | Single Camera-Projector |
DCP | Dual Cameras-Projector |
References
- Liu, Y.; Blunt, L.; Zhang, Z.; Rahman, H.A.; Gao, F.; Jiang, X. In-situ areal inspection of powder bed for electron beam fusion system based on fringe projection profilometry. Addit. Manuf. 2020, 31, 100940. [Google Scholar] [CrossRef]
- Lin, C.; He, H.; Guo, H.; Chen, M.; Shi, X.; Yu, T. Fringe projection measurement system in reverse engineering. J. Shanghai Univ. 2005, 9, 153–158. [Google Scholar] [CrossRef]
- Kuş, A. Implementation of 3D optical scanning technology for automotive applications. Sensors 2009, 9, 1967–1979. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wu, Z.; Li, Y.; Liu, Y.; Zhang, Q. Real-time 3D shape measurement with dual-frequency composite grating and motion-induced error reduction. Opt. Express 2020, 28, 26882–26897. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Ji, F.; Xue, J.; Wang, Y. Adaptive binocular fringe dynamic projection method for high dynamic range measurement. Sensors 2019, 19, 4023. [Google Scholar] [CrossRef]
- Yu, C.; Ji, F.; Xue, J.; Wang, Y. Fringe phase-shifting field based fuzzy quotient space-oriented partial differential equations filtering method for gaussian noise-induced phase error. Sensors 2019, 19, 5202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. High-speed 3D shape measurement with structured light methods: A review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, P.S. Novel method for structured light system calibration. Opt. Eng. 2006, 45, 083601. [Google Scholar]
- Yin, Y.; Peng, X.; Li, A.; Liu, X.; Gao, B.Z. Calibration of fringe projection profilometry with bundle adjustment strategy. Opt. Lett. 2012, 37, 542–544. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, Q.; Li, C.; Lang, W.; Wang, M.; Hu, Y. 3D face profilometry based on galvanometer scanner with infrared fringe projection in high speed. Appl. Sci. 2019, 9, 1458. [Google Scholar] [CrossRef]
- Huang, B.; Tang, Y.; Ozdemir, S.; Ling, H. A fast and flexible projector-camera calibration system. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1049–1063. [Google Scholar] [CrossRef]
- Zhao, H.; Liang, X.; Diao, X.; Jiang, H. Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector. Opt. Lasers Eng. 2014, 54, 170–174. [Google Scholar] [CrossRef]
- Qian, J.; Feng, S.; Tao, T.; Hu, Y.; Liu, K.; Wu, S.; Zuo, C. High-resolution real-time 360 3d model reconstruction of a handheld object with fringe projection profilometry. Opt. Lett. 2019, 44, 5751–5754. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Jiang, H.; Xu, Y.; Dong, C. Calibration for stereo vision system based on phase matching and bundle adjustment algorithm. Opt. Lasers Eng. 2015, 68, 203–213. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Tang, Q.; Cai, Z.; Peng, X.; Liu, M.; Li, Q. A method for fast 3d fringe projection measurement without phase unwrapping. In Proceedings of the Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), Shanghai, China, 8–11 May 2018; Volume 10827, pp. 237–244. [Google Scholar]
- Gai, S.; Da, F.; Tang, M. A flexible multi-view calibration and 3D measurement method based on digital fringe projection. Meas. Sci. Technol. 2019, 30, 025203. [Google Scholar] [CrossRef]
- Hu, P.; Yang, S.; Zheng, F.; Yuan, Y.; Wang, T.; Li, S.; Dear, J.P. Accurate and dynamic 3D shape measurement with digital image correlation-assisted phase shifting. Meas. Sci. Technol. 2021, 32, 075204. [Google Scholar] [CrossRef]
- Tao, T.; Chen, Q.; Da, J.; Feng, S.; Hu, Y.; Zuo, C. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system. Opt. Express 2016, 24, 20253–20269. [Google Scholar] [CrossRef] [PubMed]
- Anwar, H.; Din, I.; Park, K. Projector calibration for 3D scanning using virtual target images. Int. J. Precis. Eng. Manuf. 2012, 13, 125–131. [Google Scholar] [CrossRef]
- Song, Z.; Chung, R. Use of LCD panel for calibrating structured-light-based range sensing system. IEEE Trans. Instrum. Meas. 2018, 57, 2623–2630. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Yu, L.; Luo, H.; Zhao, H.; Xia, H. Sub-pixel projector calibration method for fringe projection profilometry. Opt. Express 2017, 25, 19158–19169. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, X.; Yang, K.; Zhu, X.; Wu, Y. Automatic calibration method for the full parameter of a camera-projector system. Opt. Eng. 2019, 58, 084105. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, J.; Zhang, H.; Yu, J.; Ye, Y. Unsupervised-learning-based calibration method in microscopic fringe projection profilometry. Appl. Opt. 2023, 62, 7299–7315. [Google Scholar] [CrossRef]
- Xing, S.; Guo, H. Iterative calibration method for measurement system having lens distortions in fringe projection profilometry. Opt. Express 2020, 28, 1177–1196. [Google Scholar] [CrossRef]
- Huang, Z.; Xi, J.; Yu, Y.; Guo, Q. Accurate projector calibration based on a new point-to-point mapping relationship between the camera and projector images. Appl. Opt. 2015, 54, 347–356. [Google Scholar] [CrossRef]
- Chen, R.; Xu, J.; Chen, H.; Su, J.; Zhang, Z.; Chen, K. Accurate calibration method for camera and projector in fringe patterns measurement system. Appl. Opt. 2016, 55, 4293–4300. [Google Scholar] [CrossRef]
- He, D.; Liu, X.; Peng, X.; Ding, Y.; Gao, B.Z. Eccentricity error identification and compensation for high-accuracy 3D optical measurement. Meas. Sci. Technol. 2013, 24, 075402. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Duane, C.B. Close-range camera calibration. Photogramm. Eng. 1971, 37, 855–866. [Google Scholar]
- Huang, L.; Zhang, Q.; Asundi, A. Camera calibration with active phase target: Improvement on feature detection and optimization. Opt. Lett. 2013, 38, 1446–1448. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Cai, B.; Wang, K.; Chen, X.; Wang, Y.; Tao, B. Stereo calibration with absolute phase target. Opt. Express 2019, 27, 22254–22267. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Liu, L.; Chen, X. Defocused camera calibration with a conventional periodic target based on Fourier transform. Opt. Lett. 2019, 44, 3254–3257. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, X.; Xue, J.; Zhang, Q.; Su, X. A flexible phase error compensation method based on probability distribution functions in phase measuring profilometry. Opt. Laser Technol. 2020, 129, 106267. [Google Scholar] [CrossRef]
- Zuo, C.; Huang, L.; Zhang, M.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2016, 85, 84–103. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.; Singh, R.K.; Pu, J. Imaging of polarimetric-phase object through scattering medium by phase shifting. Opt. Express 2020, 28, 8145–8155. [Google Scholar] [CrossRef]
Method | Device | ||||
---|---|---|---|---|---|
Separate calibration | Left-SCP | 1744.3991 ± 16.9957 | 1745.2484 ± 16.9660 | 588.1513 ± 3.3219 | 375.4900 ± 3.9784 |
(Classical) | Right-SCP | 1755.7047 ± 18.4074 | 1755.2361 ± 18.3390 | 597.7887 ± 3.3325 | 366.9479 ± 4.3530 |
Coupled calibration (Ours) | DCP | 1756.5209 ± 0.7293 | 1756.2796 ± 0.7163 | 597.7667 ± 0.3391 | 382.3472 ± 0.3184 |
Method | Device | ||||
---|---|---|---|---|---|
Separate calibration | Left-SCP | ± 0.0300 | 0.3390 ± 1.2365 | 0.0002 ± 0.0004 | ± 0.0006 |
(Classical) | Right-SCP | ± 0.0287 | ± 1.1333 | ± 0.0004 | ± 0.0006 |
Coupled calibration (Ours) | DCP | ± 0.0024 | 0.0223 ± 0.0461 | ± 0.00004 | ± 0.00005 |
Method | Device | MAE of the Diameter of Sphere A | MAE of the Diameter of Sphere B |
---|---|---|---|
Separate calibration | Left-SCP | 0.0726 | 0.1115 |
(Classical) | Right-SCP | 0.0957 | 0.1601 |
Coupled calibration | Left-SCP | 0.0481 | 0.0294 |
(Ours) | Right-SCP | 0.0341 | 0.0687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, R.; Xue, J.; Lu, W.; Song, Z.; Xu, Z.; Lu, S. A Coupled Calibration Method for Dual Cameras-Projector System with Sub-Pixel Accuracy Feature Extraction. Sensors 2024, 24, 1987. https://doi.org/10.3390/s24061987
Jia R, Xue J, Lu W, Song Z, Xu Z, Lu S. A Coupled Calibration Method for Dual Cameras-Projector System with Sub-Pixel Accuracy Feature Extraction. Sensors. 2024; 24(6):1987. https://doi.org/10.3390/s24061987
Chicago/Turabian StyleJia, Ran, Junpeng Xue, Wenbo Lu, Zeyu Song, Zhichao Xu, and Shuxin Lu. 2024. "A Coupled Calibration Method for Dual Cameras-Projector System with Sub-Pixel Accuracy Feature Extraction" Sensors 24, no. 6: 1987. https://doi.org/10.3390/s24061987