Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI
<p>Processing pipeline of data preparation for classification of health status of moss and lichen in Antarctic environment.</p> "> Figure 2
<p>Geographical representation of ASPA 135 outlined by the red polygon, and the study area delineated by the green polygon on the map.</p> "> Figure 3
<p>Ground image of study area depicting distribution of moss and lichen vegetation.</p> "> Figure 4
<p>Ground truth points overlaid on RGB Orthomosaic: Healthy moss, characterised by a green colour, is labelled as ms_gr & ms_bg. Stressed moss, displaying shades of orange or red, is denoted as ms_rd. Moribund moss, with brown or black hues, is identified by the labels ms_bw & ms_mm. Featured lichen, include those with “hairy” (fructicose <span class="html-italic">Usnea</span> spp.) black, and crusty (crustose) attributes, were classified using the labels lk_hr & lk_bk & lk_crusty.</p> "> Figure 5
<p>High resolution RGB orthomosaic of ASPA 135 developed from Sony Alpha 5100 raw images.</p> "> Figure 6
<p>A region of high resolution RGB orthomosaic.</p> "> Figure 7
<p>A region of high resolution multispectral orthomosaic.</p> "> Figure 8
<p>Labelled polygons with different classes over georeferenced multispectral orthomosaic.</p> "> Figure 9
<p>Processing pipeline of machine learning for classification of health status of moss and lichen in an Antarctic environment.</p> "> Figure 10
<p>Processing pipeline employed for XGBoost segmentation, showcasing the sequential steps and pivotal components involved in the methodology.</p> "> Figure 11
<p>Processing pipeline employed for U-Net segmentation, delineating the sequential steps and critical components integral to the methodology.</p> "> Figure 12
<p>Correlation matrix heatmap depicting the interrelationships among various vegetation indices used in the XGBoost model training for segmenting the healthy condition of moss and lichen. The colour intensity in the heatmap indicates the strength and direction of the correlations between different indices and statistical measures.</p> "> Figure 13
<p>Bar diagram of feature ranking, displaying the importance of different features in the XGBoost model’s prediction.</p> "> Figure 14
<p>Normalised confusion Matrix Heatmap representing the classification performance of XGBoost across five classes.</p> "> Figure 15
<p>Normalised confusion Matrix Heatmap representing the classification performance of U-Net across five classes using method 1.</p> "> Figure 16
<p>Normalised confusion Matrix Heatmap representing the classification performance of a U-Net across five classes using method 2.</p> "> Figure 17
<p>U-Net model training plot from method 2: (<b>a</b>) accuracy; (<b>b</b>) loss. This visual representation spans epochs 0 to 400, providing an insight into the evolution of the model’s performance over a training period.</p> "> Figure 18
<p>K-fold cross validation for U-Net model using method 2: (<b>a</b>) accuracy, (<b>b</b>) loss.</p> "> Figure 19
<p>XGBoost Segmentation results for a multi-class scenario, highlighting the model’s classification outcomes across five distinct classes in the segmentation task.</p> "> Figure 20
<p>U-Net Segmentation results (method 2) for a multi-class scenario, highlighting the model’s classification outcomes across five distinct classes in the segmentation task.</p> "> Figure 21
<p>(<b>a</b>) High resolution RGB image; (<b>b</b>) U-Net segmentation; (<b>c</b>) XGBoost segmentation.</p> "> Figure 22
<p>Comparison of XGBoost and U-Net predictions of healthy moss in a region of interest.</p> "> Figure 23
<p>Comparison of XGBoost and U-Net predictions of stressed moss in a region of interest.</p> "> Figure 24
<p>Comparison of XGBoost and U-Net predictions of moribund moss in a region of interest.</p> "> Figure 25
<p>Comparison of XGBoost and U-Net predictions of lichen in a region of interest.</p> ">
Abstract
:1. Introduction
2. Data Collection and Curation
- Step 1: Data Collection
2.1. Study Area
2.2. Airborne Data Acquisition
2.3. Ground Truth Data Collection
- Step 2: Image Pre-Processing
- Step 3: Data labelling
- Step 4: ROI extraction
- Step 5: Statistical analysis
3. Machine Learning Models for Vegetation Mapping
3.1. XGBoost Model Training and Fine Tuning
3.2. U-Net Model Training and Fine-Tuning
3.3. Verification
3.4. Prediction
4. Results
4.1. Correlation Analysis and Feature Ranking
4.2. Performance of XGBoost
4.3. Performance of U-Net
4.4. Segmented Maps
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.R.; Waterman, M.J.; Shaw, J.D.; Bergstrom, D.M.; Lynch, H.J.; Wall, D.H.; Robinson, S.A. Islands in the Ice: Potential Impacts of Habitat Transformation on Antarctic Biodiversity. Glob. Change Biol. 2022, 28, 5865–5880. [Google Scholar] [CrossRef]
- Fretwell, P.T.; Convey, P.; Fleming, A.H.; Peat, H.J.; Hughes, K.A. Detecting and Mapping Vegetation Distribution on the Antarctic Peninsula from Remote Sensing Data. Polar Biol. 2011, 34, 273–281. [Google Scholar] [CrossRef]
- Yin, H.; Perera-Castro, A.V.; Randall, K.L.; Turnbull, J.D.; Waterman, M.J.; Dunn, J.; Robinson, S.A. Basking in the Sun: How Mosses Photosynthesise and Survive in Antarctica. Photosynth. Res. 2023, 158, 151–169. [Google Scholar] [CrossRef] [PubMed]
- King, D.H.; Wasley, J.; Ashcroft, M.B.; Ryan-Colton, E.; Lucieer, A.; Chisholm, L.A.; Robinson, S.A. Semi-Automated Analysis of Digital Photographs for Monitoring East Antarctic Vegetation. Front. Plant Sci. 2020, 11, 766. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Fu, X.; Wang, B. Predictability and Prediction of the Madden-Julian Oscillation: A Review on Progress and Current Status. In The Global Monsoon System; World Scientific: Singapore, 2017; pp. 147–159. [Google Scholar]
- Robinson, S.A.; King, D.H.; Bramley-Alves, J.; Waterman, M.J.; Ashcroft, M.B.; Wasley, J.; Turnbull, J.D.; Miller, R.E.; Ryan-Colton, E.; Benny, T.; et al. Rapid Change in East Antarctic Terrestrial Vegetation in Response to Regional Drying. Nat. Clim. Change 2018, 8, 879–884. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Sotille, M.E.; Bremer, U.F.; Vieira, G.; Velho, L.F.; Petsch, C.; Simões, J.C. Evaluation of UAV and Satellite-Derived NDVI to Map Maritime Antarctic Vegetation. Appl. Geogr. 2020, 125, 102322. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, X.; Cao, L.; Coops, N.C.; Goodbody, T.R.H.; Zhong, T.; Zhao, W.; Sun, Q.; Ba, S.; Zhang, Z.; et al. Tree Species Classification Using UAS-Based Digital Aerial Photogrammetry Point Clouds and Multispectral Imageries in Subtropical Natural Forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102173. [Google Scholar] [CrossRef]
- Hartling, S.; Sagan, V.; Maimaitijiang, M. Urban Tree Species Classification Using UAV-Based Multi-Sensor Data Fusion and Machine Learning. GISci. Remote Sens. 2021, 58, 1250–1275. [Google Scholar] [CrossRef]
- Liu, H.; Yu, T.; Hu, B.; Hou, X.; Zhang, Z.; Liu, X.; Liu, J.; Wang, X.; Zhong, J.; Tan, Z.; et al. Uav-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring. Remote Sens. 2021, 13, 4069. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping Maize Crop Coefficient Kc Using Random Forest Algorithm Based on Leaf Area Index and UAV-Based Multispectral Vegetation Indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Amarasingam, N.; Gonzalez, F.; Salgadoe, A.S.A.; Sandino, J.; Powell, K. Detection of White Leaf Disease in Sugarcane Crops Using UAV-Derived RGB Imagery with Existing Deep Learning Models. Remote Sens. 2022, 14, 6137. [Google Scholar] [CrossRef]
- Yang, W.; Xu, W.; Wu, C.; Zhu, B.; Chen, P.; Zhang, L.; Lan, Y. Cotton Hail Disaster Classification Based on Drone Multispectral Images at the Flowering and Boll Stage. Comput. Electron. Agric. 2021, 180, 105866. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and Ground-Based Remote Sensing Techniques for Landslide Mapping, Monitoring and Early Warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Tan, L.; Lu, J.; Jiang, H. Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods. AgriEngineering 2021, 3, 542–558. [Google Scholar] [CrossRef]
- Vong, C.N.; Conway, L.S.; Zhou, J.; Kitchen, N.R.; Sudduth, K.A. Early Corn Stand Count of Different Cropping Systems Using UAV-Imagery and Deep Learning. Comput. Electron. Agric. 2021, 186, 106214. [Google Scholar] [CrossRef]
- Qin, B.; Sun, F.; Shen, W.; Dong, B.; Ma, S.; Huo, X.; Lan, P. Deep Learning-Based Pine Nematode Trees’ Identification Using Multispectral and Visible UAV Imagery. Drones 2023, 7, 183. [Google Scholar] [CrossRef]
- Genze, N.; Ajekwe, R.; Güreli, Z.; Haselbeck, F.; Grieb, M.; Grimm, D.G. Deep Learning-Based Early Weed Segmentation Using Motion Blurred UAV Images of Sorghum Fields. Comput. Electron. Agric. 2022, 202, 168. [Google Scholar] [CrossRef]
- Fragassa, C.; Vitali, G.; Emmi, L.; Arru, M. A New Procedure for Combining UAV-Based Imagery and Machine Learning in Precision Agriculture. Sustainability 2023, 15, 998. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.e.S.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimarães, P.H.S. Detecting Coffee Leaf Rust with UAV-Based Vegetation Indices and Decision Tree Machine Learning Models. Comput. Electron. Agric. 2021, 190, 106476. [Google Scholar] [CrossRef]
- Galanty, A.; Danel, T.; Węgrzyn, M.; Podolak, I.; Podolak, I. Deep Convolutional Neural Network for Preliminary in-Field Classification of Lichen Species. Biosyst. Eng. 2021, 204, 15–25. [Google Scholar] [CrossRef]
- Lovitt, J.; Richardson, G.; Rajaratnam, K.; Chen, W.; Leblanc, S.G.; He, L.; Nielsen, S.E.; Hillman, A.; Schmelzer, I.; Arsenault, A. A New U-Net Based Convolutional Neural Network for Estimating Caribou Lichen Ground Cover from Field-Level RGB Images. Can. J. Remote Sens. 2022, 48, 849–872. [Google Scholar] [CrossRef]
- Hendrawan, Y.; Damayanti, R.; Al Riza, D.F.; Hermanto, M.B. Classification of Water Stress in Cultured Sunagoke Moss Using Deep Learning. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2021, 19, 1594–1604. [Google Scholar] [CrossRef]
- Román, A.; Navarro, G.; Caballero, I.; Tovar-Sánchez, A. High-Spatial Resolution UAV Multispectral Data Complementing Satellite Imagery to Characterize a Chinstrap Penguin Colony Ecosystem on Deception Island (Antarctica). GISci. Remote Sens. 2022, 59, 1159–1176. [Google Scholar] [CrossRef]
- Miranda, V.; Pina, P.; Heleno, S.; Vieira, G.; Mora, C.; Schaefer, C.E.G.R. Monitoring Recent Changes of Vegetation in Fildes Peninsula (King George Island, Antarctica) through Satellite Imagery Guided by UAV Surveys. Sci. Total Environ. 2020, 704, 135295. [Google Scholar] [CrossRef]
- Fraser, R.H.; Pouliot, D.; van der Sluijs, J. UAV and High Resolution Satellite Mapping of Forage Lichen (Cladonia spp.) in a Rocky Canadian Shield Landscape. Can. J. Remote Sens. 2022, 48, 5–18. [Google Scholar] [CrossRef]
- Pina, P.; Vieira, G. UAVs for Science in Antarctica. Remote Sens. 2022, 14, 1610. [Google Scholar] [CrossRef]
- He, L.; Chen, W.; Leblanc, S.G.; Lovitt, J.; Arsenault, A.; Schmelzer, I.; Fraser, R.H.; Latifovic, R.; Sun, L.; Prévost, C.; et al. Integration of Multi-Scale Remote Sensing Data for Reindeer Lichen Fractional Cover Mapping in Eastern Canada. Remote Sens. Environ. 2021, 267, 112731. [Google Scholar] [CrossRef]
- Turner, D.; Cimoli, E.; Lucieer, A.; Haynes, R.S.; Randall, K.; Waterman, M.J.; Lucieer, V.; Robinson, S.A. Mapping Water Content in Drying Antarctic Moss Communities Using UAS-Borne SWIR Imaging Spectroscopy. Remote Sens. Ecol. Conserv. 2023. [Google Scholar] [CrossRef]
- Lucieer, A.; Robinson, S.A.; Turner, D. Using an Unmanned Aerial Vehicle (UAV) for Ultra-High Resolution Mapping of Antarctic Moss Beds. In Proceedings of the 15th Australasian Remote Sensing & Photogrammetry Conference, Alice Springs, Australia, 13–17 September 2010. [Google Scholar]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping Forest Tree Species in High Resolution UAV-Based RGB-Imagery by Means of Convolutional Neural Networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Zheng, J.-Y.; Hao, Y.-Y.; Wang, Y.-C.; Zhou, S.-Q.; Wu, W.-B.; Yuan, Q.; Gao, Y.; Guo, H.-Q.; Cai, X.-X.; Zhao, B. Coastal Wetland Vegetation Classification Using Pixel-Based, Object-Based and Deep Learning Methods Based on RGB-UAV. Land 2022, 11, 2039. [Google Scholar] [CrossRef]
- Hoffrén, R.; Lamelas, M.T.; de la Riva, J. UAV-Derived Photogrammetric Point Clouds and Multispectral Indices for Fuel Estimation in Mediterranean Forests. Remote Sens. Appl. Soc. Environ. 2023, 31, 100997. [Google Scholar] [CrossRef]
- Parsons, M.; Bratanov, D.; Gaston, K.J.; Gonzalez, F. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring. Sensors 2018, 18, 2026. [Google Scholar] [CrossRef] [PubMed]
- Bollard, B.; Doshi, A.; Gilbert, N.; Poirot, C.; Gillman, L. Drone Technology for Monitoring Protected Areas in Remote and Fragile Environments. Drones 2022, 6, 42. [Google Scholar] [CrossRef]
- Sandino, J.; Bollard, B.; Doshi, A.; Randall, K.; Barthelemy, J.; Robinson, S.A.; Gonzalez, F. A Green Fingerprint of Antarctica: Drones, Hyperspectral Imaging, and Machine Learning for Moss and Lichen Classification. Remote Sens. 2023, 15, 5658. [Google Scholar] [CrossRef]
- Váczi, P.; Barták, M. Multispectral Aerial Monitoring of a Patchy Vegetation Oasis Composed of Different Vegetation Classes. UAV-Based Study Exploiting Spectral Reflectance Indices. Czech Polar Rep. 2022, 12, 131–142. [Google Scholar] [CrossRef]
- Tovar-Sánchez, A.; Román, A.; Roque-Atienza, D.; Navarro, G. Applications of Unmanned Aerial Vehicles in Antarctic Environmental Research. Sci. Rep. 2021, 11, 21717. [Google Scholar] [CrossRef] [PubMed]
- Waterman, M.J.; Bramley-Alves, J.; Miller, R.E.; Keller, P.A.; Robinson, S.A. Photoprotection Enhanced by Red Cell Wall Pigments in Three East Antarctic Mosses. Biol. Res. 2018, 51, 49. [Google Scholar] [CrossRef]
- Imran, A.B.; Khan, K.; Ali, N.; Ahmad, N.; Ali, A.; Shah, K. Narrow Band Based and Broadband Derived Vegetation Indices Using Sentinel-2 Imagery to Estimate Vegetation Biomass. Glob. J. Environ. Sci. Manag. 2020, 6, 97–108. [Google Scholar] [CrossRef]
- Marcial-Pablo, M.d.J.; Gonzalez-Sanchez, A.; Jimenez-Jimenez, S.I.; Ontiveros-Capurata, R.E.; Ojeda-Bustamante, W. Estimation of Vegetation Fraction Using RGB and Multispectral Images from UAV. Int. J. Remote Sens. 2019, 40, 420–438. [Google Scholar] [CrossRef]
- Scher, C.L.; Karimi, N.; Glasenhardt, M.-C.; Tuffin, A.; Cannon, C.H.; Scharenbroch, B.C.; Hipp, A.L. Application of Remote Sensing Technology to Estimate Productivity and Assess Phylogenetic Heritability. Appl. Plant Sci. 2020, 8, e11401. [Google Scholar] [CrossRef] [PubMed]
- Avola, G.; Di Gennaro, S.F.; Cantini, C.; Riggi, E.; Muratore, F.; Tornambè, C.; Matese, A. Remotely Sensed Vegetation Indices to Discriminate Field-Grown Olive Cultivars. Remote Sens. 2019, 11, 1242. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early Detection of Pine Wilt Disease Using Deep Learning Algorithms and UAV-Based Multispectral Imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Melillos, G.; Hadjimitsis, D.G. Using Simple Ratio (SR) Vegetation Index to Detect Deep Man-Made Infrastructures in Cyprus. Proc. SPIE 2020, 1418, 105–113. [Google Scholar]
- Susantoro, T.M.; Wikantika, K.; Saepuloh, A.; Harsolumakso, A.H. Selection of Vegetation Indices for Mapping the Sugarcane Condition around the Oil and Gas Field of North West Java Basin, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012001. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Bhardwaj, R.; Thukral, A.K. Comparison of Different Reflectance Indices for Vegetation Analysis Using Landsat-TM Data. Remote Sens. Appl. Soc. Environ. 2018, 12, 70–77. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Boiarskii, B. Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. J. Mech. Contin. Math. Sci. 2019, 4, 20–29. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L. Broadband, Red-Edge Information from Satellites Improves Early Stress Detection in a New Mexico Conifer Woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Yang, C.; Xie, T.; Jiang, Z.; Hu, T.; Luo, Z.; Zhou, G.; Xie, J. Assessing the Effect of Real Spatial Resolution of In Situ UAV Multispectral Images on Seedling Rapeseed Growth Monitoring. Remote Sens. 2020, 12, 1207. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Jannoura, R.; Brinkmann, K.; Uteau, D.; Bruns, C.; Joergensen, R.G. Monitoring of Crop Biomass Using True Colour Aerial Photographs Taken from a Remote Controlled Hexacopter. Biosyst. Eng. 2015, 129, 341–351. [Google Scholar] [CrossRef]
- Capolupo, A.; Monterisi, C.; Tarantino, E. Landsat Images Classification Algorithm (LICA) to Automatically Extract Land Cover Information in Google Earth Engine Environment. Remote Sens. 2020, 12, 1201. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep Leaning Approach with Colorimetric Spaces and Vegetation Indices for Vine Diseases Detection in UAV Images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Powell, K. Detection of White Leaf Disease in Sugarcane Using Machine Learning Techniques over UAV Multispectral Images. Drones 2022, 6, 230. [Google Scholar] [CrossRef]
- Amarasingam, N.; Hamilton, M.; Kelly, J.E.; Zheng, L.; Sandino, J.; Gonzalez, F.; Dehaan, R.L.; Cherry, H. Autonomous Detection of Mouse-Ear Hawkweed Using Drones, Multispectral Imagery and Supervised Machine Learning. Remote Sens. 2023, 15, 1633. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Eischeid, I.; Soininen, E.M.; Assmann, J.J.; Ims, R.A.; Madsen, J.; Pedersen, Å.; Pirotti, F.; Yoccoz, N.G.; Ravolainen, V.T. Disturbance Mapping in Arctic Tundra Improved by a Planning Workflow for Drone Studies: Advancing Tools for Future Ecosystem Monitoring. Remote Sens. 2021, 13, 4466. [Google Scholar] [CrossRef]
- Sotille, M.E.; Bremer, U.F.; Vieira, G.; Velho, L.F.; Petsch, C.; Auger, J.D.; Simões, J.C. UAV-Based Classification of Maritime Antarctic Vegetation Types Using GEOBIA and Random Forest. Ecol. Inform. 2022, 71, 101768. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.; Robinson, S.A. Assessment of Antarctic Moss Health from Multi-Sensor UAS Imagery with Random Forest Modelling. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 168–179. [Google Scholar] [CrossRef]
Specifications | BMR3.9RTK | DJI Mini 3 Pro |
---|---|---|
Weight | 12 kg, Maximum take-off weight of 14 kg | Less than 249 g |
Battery type | Two six cell LiPo batteries | Li-ion |
Flight time | 30 min with dual payload capability | 34 min (with Intelligent Flight Battery measured while flying at 21.6 kph in windless conditions) |
Specifications | MicaSense Altum | Sony Alpha 5100 | DJI Mini 3 Pro Inbuilt Camera |
---|---|---|---|
Number of bands | Five multispectral and a thermal band | Three | Three |
Bands | blue, green, red, red-edge, and near-infrared, short wave infrared (thermal) | blue, green, red | blue, green, red |
Resolution | Multispectral: 3.2 megapixels (MPs) and Thermal: 320 × 256 pixels. | 24.3 MPs | 48 MPs |
Field of view | 50.2° × 38.4° | 83° | 82.1° |
Health Status of Moss | Description |
---|---|
Healthy | Moss in good health exhibits shades ranging from dark (ms_gr) to bright green (ms_bg), indicating healthy chloroplasts and plenty of chlorophyll. It is typically found in regions with consistent meltwater availability. |
Stressed | Moss undergoing stress experiences a reduction in chlorophyll pigments, appearing red or brown (ms_rd) due to the presence of carotenoids and other photoprotective pigments, as noted by Waterman et al. (2018). Stressors such as drought or intense solar radiation can contribute to this condition. However, if the stress is reversed, the moss turf has the potential to regain its green colour, facilitated by the formation of new leaves [4]. |
Moribund | Intense or prolonged stress leads to the moribund state of moss, where leaves undergo pigment loss, rendering them grey in colour (ms_bw and ms_mm). Additionally, these stressed moss specimens may become encrusted with lichens. |
Spectral Indices | Formula | Literature Review |
---|---|---|
Normalised Difference Vegetation Index (NDVI) | [43] | |
Green Normalised Difference Vegetation Index (GNDVI) | [44,45,46] | |
Modified Soil-Adjusted Vegetation Index (MSAVI) | [47] | |
Enhanced Vegetation Index (EVI) | [48] | |
Simple Ratio Index (SRI) | [49] | |
Atmospherically Resistant Vegetation Index (ARVI) | [47] | |
Structure Insensitive Pigment Index (SIPI) | [50] | |
Green Chlorophyll Index (GCI) | [51,52] | |
Normalised Difference Red Edge Index (NDRE) | [53,54,55] | |
Leaf Chlorophyll Index (LCI) | [48] | |
Difference Vegetation Index (DVI) | [46,51,56] | |
Triangular Vegetation Index (TVI) | [48] | |
Normalised Green Red Difference (NGRDI) | [46,57] | |
Optimised Soil-Adjusted Vegetation Index (OSAVI) | [58] | |
Green Optimised Soil Adjusted Vegetation Index (GOSAVI) | [58] | |
Excess Green (EXG) | [59] | |
Excess Red (EXR) | [59] | |
Excess Green Red (EXGR) | [59] | |
Red Green Index (RGI) | [59] | |
Green Red Vegetation Index (GRVI) | [59] | |
Enhanced Normalised Difference Vegetation Index (ENDVI) | [50] |
Preprocessing | Patch size | 32, 64, 128, 256 |
Overlap | 0.1, 0.2, 0.3 | |
Low pass filter | Without filter, 3 × 3, 5 × 5, 7 × 7 | |
Gaussian blur filter | Without filter, 3 × 3, 5 × 5, 7 × 7 | |
Train test split | 20%, 25%, 30% | |
Model Architecture | Convolution layers | 8–1024, 16–1024, 32–1024, 64–1024, 128–1024, 16–512, 32–512, 128–512, 8–256, 16–256, 32–256 |
Kernal size | 1 × 1, 3 × 3, 5 × 5 | |
Dropout | 0.1, 0.2 | |
Model compile and Training | Learning rate | 0.1, 0.01, 0.001, 0.0001 |
Batch size | 10, 15, 20, 25, 30, 35 | |
Epochs | 50, 75, 100, 150, 200, 250, 300, 400 |
Classes | Precision | Recall | F1-Score |
---|---|---|---|
Healthy Moss | 0.86 | 0.71 | 0.78 |
Stressed Moss | 0.86 | 0.83 | 0.85 |
Moribund Moss | 0.88 | 0.92 | 0.90 |
Lichen | 0.94 | 0.91 | 0.93 |
Non-Vegetation | 1.00 | 1.00 | 1.00 |
Classes | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|
Healthy Moss | 0.74 | 0.70 | 0.72 | 0.56 |
Stressed Moss | 0.69 | 0.82 | 0.75 | 0.60 |
Moribund Moss | 0.77 | 0.76 | 0.77 | 0.63 |
Lichen | 0.86 | 0.84 | 0.85 | 0.74 |
Non-Vegetation | 1.00 | 1.00 | 1.00 | 0.99 |
Classes | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|
Healthy Moss | 0.94 | 0.71 | 0.81 | 0.67 |
Stressed Moss | 0.86 | 0.86 | 0.86 | 0.75 |
Moribund Moss | 0.87 | 0.94 | 0.90 | 0.82 |
Lichen | 0.95 | 0.85 | 0.90 | 0.82 |
Non-Vegetation | 0.94 | 0.97 | 0.96 | 0.92 |
Class | XGBoost | U-Net |
---|---|---|
Healthy Moss | 6% | 3% |
Stressed Moss | 15% | 12% |
Moribund Moss | 20% | 30% |
Lichen | 21% | 21% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raniga, D.; Amarasingam, N.; Sandino, J.; Doshi, A.; Barthelemy, J.; Randall, K.; Robinson, S.A.; Gonzalez, F.; Bollard, B. Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI. Sensors 2024, 24, 1063. https://doi.org/10.3390/s24041063
Raniga D, Amarasingam N, Sandino J, Doshi A, Barthelemy J, Randall K, Robinson SA, Gonzalez F, Bollard B. Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI. Sensors. 2024; 24(4):1063. https://doi.org/10.3390/s24041063
Chicago/Turabian StyleRaniga, Damini, Narmilan Amarasingam, Juan Sandino, Ashray Doshi, Johan Barthelemy, Krystal Randall, Sharon A. Robinson, Felipe Gonzalez, and Barbara Bollard. 2024. "Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI" Sensors 24, no. 4: 1063. https://doi.org/10.3390/s24041063