Intuitive Cell Manipulation Microscope System with Haptic Device for Intracytoplasmic Sperm Injection Simplification
<p>Procedure of ICSI.</p> "> Figure 2
<p>Configuration of the proposed system.</p> "> Figure 3
<p>Overview of the proposed system.</p> "> Figure 4
<p>Grip angle of the manipulation interface.</p> "> Figure 5
<p>Manipulation of a target with suction pressure.</p> "> Figure 6
<p>Manipulation of a target with discharge pressure.</p> "> Figure 7
<p>Contact situation.</p> "> Figure 8
<p>Noncontact situation.</p> "> Figure 9
<p>Injection with a guide function.</p> "> Figure 10
<p>Overview of the experimental procedure.</p> "> Figure 11
<p>Injection error ‘<span class="html-italic">d</span>’.</p> "> Figure 12
<p>Experimental scene.</p> "> Figure 13
<p>Box plot of task time.</p> "> Figure 14
<p>Box plot of total error.</p> "> Figure 15
<p>Box plot of x-axis error.</p> "> Figure 16
<p>Box plot of y-axis error.</p> "> Figure 17
<p>Box plot of z-axis error.</p> "> Figure 18
<p>Overhead view of the operation during the demonstration.</p> "> Figure 19
<p>Presented image during demonstration.</p> "> Figure 20
<p>Force graph presented during the demonstration.</p> ">
Abstract
:1. Introduction
2. Intuitive Cell Manipulation Microscope System
2.1. System Configuration
2.2. Micromanipulation with Haptic Device
Algorithm 1 Algorithm of micromanipulation system. |
|
3. Intuitive Pipette Manipulation with Haptic Device
3.1. Operation Interface
3.2. Cell Suction/Discharge
4. Manipulation Assistance with Force Presentation
4.1. Holding Pipette
4.2. Injection Pipette
- Automatic PositioningWhen the guided mode is selected, the y and z coordinates of the injection pipette tip are automatically aligned with the y and z coordinates of the cell, respectively, enabling puncturing at the exact position without manual alignment.
- Fixation of puncture directionAfter automatic position adjustment in the guide mode, only operations along the x-axis direction are accepted to prevent misalignment of the puncture direction.
5. Experiment
5.1. Method
- Aspirate the microbeads (diameter ) in Working space 1 with a Holdin pipette while viewing the extended view image.
- Move to Working space 2 and switch to a 3D image.
- Contact the tip of the injection pipette with the x-coordinate end of the microbeads.
- Switch to the extended view image and move the microbeads to Working space 3.
- Eject the microbeads from the holding pipette.
5.2. Results
5.3. Discussion
6. Demonstration
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, C.L.; Chow, S.; Rosenwaks, Z.; Palermo, G.D. Development of ICSI. Reproduction 2018, 156, F51–F58. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M. Thoughts on the popularity of ICSI. J. Assist. Reprod. Genet. 2020, 38, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Fukui, Y. Technical Improvement in Intracytoplasmic Sperm Injection (ICSI) in Cattle. J. Reprod. Dev. 2000, 46, 403–407. [Google Scholar] [CrossRef]
- Leung, C.; Lu, Z.; Zhang, X.P.; Sun, Y. Three-Dimensional Rotation of Mouse Embryos. IEEE Trans. Biomed. Eng. 2012, 59, 1049–1056. [Google Scholar] [CrossRef]
- Rodrigo, J.A.; Soto, J.M.; Alieva, T. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed. Opt. Express 2017, 8, 5507–5517. [Google Scholar] [CrossRef]
- Memmolo, P.; Miccio, L.; Paturzo, M.; Caprio, G.D.; Coppola, G.; Netti, P.A.; Ferraro, P. Recent advances in holographic 3D particle tracking. Adv. Opt. Photon. 2015, 7, 713–755. [Google Scholar] [CrossRef]
- Andersson, M.X.; Goksör, M.; Sandelius, A.S. Optical Manipulation Reveals Strong Attracting Forces at Membrane Contact Sites between Endoplasmic Reticulum and Chloroplasts. J. Biol. Chem. 2007, 282, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, S.; Zi, Y.; Qian, Y.; Cai, W.; Aldén, M.; Li, Z. Clustering-based particle detection method for digital holography to detect the three-dimensional location and in-plane size of particles. Meas. Sci. Technol. 2021, 32, 055205. [Google Scholar] [CrossRef]
- Wang, H.; Bai, K.; Chen, J.; Shi, Q.; Sun, T.; Cui, J.; Huang, Q.; Fukuda, T. Digital Holography Based Three-Dimensional Multi-Target Locating for Automated Cell Micromanipulation. IEEE Trans. Autom. Sci. Eng. 2024, 21, 332–342. [Google Scholar] [CrossRef]
- Greenbaum, A.; Luo, W.; Khademhosseinieh, B.; Su, T.W.; Coskun, A.F.; Ozcan, A. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep. 2013, 3, 1717. [Google Scholar] [CrossRef]
- Luo, W.; Greenbaum, A.; Zhang, Y.; Ozcan, A. Synthetic aperture-based on-chip microscopy. Light. Sci. Appl. 2015, 4, e261. [Google Scholar] [CrossRef]
- Aoyama, T.; Yamada, S.; Suematsu, N.; Takeuchi, M.; Hasegawa, Y. Visual Sensing System to Investigate Self-Propelled Motion and Internal Color of Multiple Aqueous Droplets. Sensors 2023, 22, 6309. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Takeno, S.; Yokoe, K.; Hano, K.; Takasu, M.; Takeuchi, M.; Hasegawa, Y. Micromanipulation System Capable of Simultaneously Presenting High-Resolution and Large Field-of-View Images in Real-Time. IEEE Access 2023, 11, 34274–34285. [Google Scholar] [CrossRef]
- Fujishiro, T.; Aoyama, T.; Hano, K.; Takasu, M.; Takeuchi, M.; Hasegawa, Y. Microinjection System to Enable Real-Time 3D Image Presentation Through Focal Position Adjustment. IEEE Robot. Autom. Lett. 2021, 6, 4025–4031. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.K.; Liu, X.; Sun, Y. Autonomous Robotic Pick-and-Place of Microobjects. IEEE Trans. Robot. 2010, 26, 200–207. [Google Scholar] [CrossRef]
- Rohani, A.; Varhue, W.; Su, Y.H.; Swami, N.S. Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth. Electrophoresis 2014, 35, 1795–1802. [Google Scholar] [CrossRef] [PubMed]
- Elbez, R.; McNaughton, B.H.; Patel, L.; Pienta, K.J.; Kopelman, R. Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell. PLoS ONE 2011, 6, e28475. [Google Scholar] [CrossRef]
- Ozcelik, A.; Nama, N.; Huang, P.H.; Kaynak, M.; McReynolds, M.R.; Hanna-Rose, W.; Huang, T.J. Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures. Small 2016, 12, 5120–5125. [Google Scholar] [CrossRef]
- Ding, X.; Lin, S.C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef]
- Carmon, G.; Feingold, M. Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt. Lett. 2011, 36, 40–42. [Google Scholar] [CrossRef]
- Xie, M.; Shakoor, A.; Shen, Y.; Mills, J.K.; Sun, D. Out-of-Plane Rotation Control of Biological Cells with a Robot-Tweezers Manipulation System for Orientation-Based Cell Surgery. IEEE Trans. Biomed. Eng. 2019, 66, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Gong, H. Automatic Cell Rotation Based on Real-Time Detection and Tracking. IEEE Robot. Autom. Lett. 2021, 6, 7909–7916. [Google Scholar] [CrossRef]
- Yalikun, Y.; Kanda, Y.; Morishima, K. Hydrodynamic vertical rotation method for a single cell in an open space. Microfluid. Nanofluidics 2016, 20, 1–10. [Google Scholar] [CrossRef]
- Shelby, J.P.; Chiu, D.T. Controlled rotation of biological micro-and nano-particles in microvortices. Lab Chip 2004, 4, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Hosokawa, Y.; Hayakawa, T.; Tanaka, Y.; Li, W.; Li, M.; Yalikun, Y. Rotation of Biological Cells: Fundamentals and Applications. Engineering 2021, 10, 110–126. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Gelinas, D.; Ciruna, B.; Sun, Y. A Fully Automated Robotic System for Microinjection of Zebrafish Embryos. PLoS ONE 2007, 2, e862. [Google Scholar] [CrossRef] [PubMed]
- Nan, Z.; Xu, Q.; Zhang, Y.; Ge, W. Force-Sensing Robotic Microinjection System for Automated Multi-Cell Injection with Consistent Quality. IEEE Access 2019, 7, 55543–55553. [Google Scholar] [CrossRef]
- Abdullah, K.; Atazhanova, T.; Chavez-Badiola, A.; Biswas Shivhare, S. Automation in ART: Paving the Way for the Future of Infertility Treatment. Reprod. Sci. 2022, 30, 1006–1016. [Google Scholar] [CrossRef]
- Zammit, R. Ethical Issues of Artificial Intelligence & Assisted Reproductive Technologies. Int. J. Prenat. Life Sci. 2023, 1–24. [Google Scholar] [CrossRef]
Condition | Operation Interface |
---|---|
(a) | Joystick |
(b) | Haptic device |
Subjects | Joystick | Haptic Device |
---|---|---|
A | 64.4 | 28.1 |
B | 64.8 | 29.6 |
C | 50.0 | 19.0 |
D | 63.5 | 34.9 |
E | 56.9 | 32.3 |
F | 54.9 | 24.1 |
avg. | 59.1 | 28.0 |
Subjects | Joystick | Haptic Device |
---|---|---|
A | 7.13 | 3.22 |
B | 10.91 | 2.09 |
C | 10.05 | 4.46 |
D | 17.33 | 2.44 |
E | 15.42 | 3.08 |
F | 15.98 | 3.63 |
avg. | 12.80 | 3.16 |
Subjects | Joystick | Haptic Device |
---|---|---|
A | 5.20 | 0.96 |
B | 1.84 | 1.47 |
C | 5.06 | 2.96 |
D | 3.72 | 1.42 |
E | 7.00 | 1.52 |
F | 6.30 | 2.83 |
avg. | 4.85 | 1.86 |
Subjects | Joystick | Haptic Device |
---|---|---|
A | 1.90 | 2.86 |
B | 2.15 | 1.10 |
C | 6.64 | 2.74 |
D | 5.25 | 1.67 |
E | 7.50 | 2.45 |
F | 6.20 | 1.14 |
avg. | 4.94 | 2.00 |
Subjects | Joystick | Haptic Device |
---|---|---|
A | 3.49 | 0.23 |
B | 10.15 | 0.14 |
C | 3.66 | 0.26 |
D | 15.23 | 0.27 |
E | 10.13 | 0.27 |
F | 11.32 | 0.98 |
avg. | 9.00 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, K.; Aoyama, T.; Takeuchi, M.; Hasegawa, Y. Intuitive Cell Manipulation Microscope System with Haptic Device for Intracytoplasmic Sperm Injection Simplification. Sensors 2024, 24, 711. https://doi.org/10.3390/s24020711
Sakamoto K, Aoyama T, Takeuchi M, Hasegawa Y. Intuitive Cell Manipulation Microscope System with Haptic Device for Intracytoplasmic Sperm Injection Simplification. Sensors. 2024; 24(2):711. https://doi.org/10.3390/s24020711
Chicago/Turabian StyleSakamoto, Kazuya, Tadayoshi Aoyama, Masaru Takeuchi, and Yasuhisa Hasegawa. 2024. "Intuitive Cell Manipulation Microscope System with Haptic Device for Intracytoplasmic Sperm Injection Simplification" Sensors 24, no. 2: 711. https://doi.org/10.3390/s24020711