An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion
<p>Proposed electrical resistance diagnostic during a LPBF print process. Electrodes are used to inject currents in the printed area. Changes in measured electric voltage from resistance variations along the current flow direction during printing is used to monitor the printing process.</p> "> Figure 2
<p>Simulation model results: (<b>a</b>) Electric voltage distribution in a build plate with a printed hatch, (<b>b</b>) Effect of conductivity and hatch width on the electric voltage, (<b>c</b>) Electric voltage distribution in a build plate with a printed hatch with a defect, (<b>d</b>) Effect of the defect length on the electric voltage, (<b>e</b>) Electric voltage for different defect configurations (indicated in the insets). Case I represents a build plate with no defect, Case II represents an off-centered defect, Cases III–V represent a centered defect with increasing lengths, Case VI represents a configuration with two defects (one centered and one off-centered). ‘+’ denote current electrode and ‘o’ denote voltage measurement electrode.</p> "> Figure 3
<p>Experimental results on LPBF 3-D printed part: (<b>a</b>) SS build plate with several printed parts using LPBF process, with the isolated cuboid highlighted in red and zoomed-in on an inset as our selected printed part for the electrical measurements, (<b>b</b>) experimental results for different cases with varying current injection and measurement configuration (Cases I and II refer to measurements with no part, while cases III–V refer to measurements with the printed part), (<b>c</b>) experimental setup with five different current injection-voltage measurement configuration, (<b>d</b>) simulated electric voltage distribution for all the cases help understand the physics and experimental results.</p> "> Figure 4
<p>Experimental results on LPBF printed single layer hatches: (<b>a</b>) five different SS discs of diameter 1 inch with laser printed hatches of length 4 mm and traces varying from 1 to 10 used for experiments, (<b>b</b>) microscopic images (optical zoom: 12×) of the four hatch samples showing the exact width of the hatches (scale: 1 mm), (<b>c</b>) experimental system with high-precision magnetic arm-based four electrode system to reliably place the electrodes (close-up picture of the voltage and current electrodes in contact with the disc), (<b>d</b>) experimental results for the printed hatches show detection of a single trace hatch and monotonic increase in voltage with increasing traces in hatch, and well-matched with simulation results (inset shows simulated electric voltage distribution in the disc with the current injection-measurement configuration to help understand the physics, ‘+’ denote current electrode and ‘o’ denote voltage measurement electrode).</p> ">
Abstract
:1. Introduction
2. Simulation Model
3. Experimental Results
3.1. Experiments on 3-D Printed Part: Effect of Current Injection Patterns
- I
- Opposite injection, orthogonal opposite measurement with no part.
- II
- Adjacent injection, opposite adjacent measurement with no part.
- III
- Opposite injection, orthogonal opposite measurement with a printed part.
- IV
- Opposite injection, opposite diagonal measurement with a printed part.
- V
- Adjacent injection, opposite adjacent measurement with a printed part.
3.2. Experimental Results for Single Layer Prints
3.3. Effect of Number of Traces of Printed Hatches
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, W.E.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A.; Rubenchik, A.M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2015, 2, 041304. [Google Scholar] [CrossRef]
- Wohlers, T.; Caffrey, T. Wohlers report 2010. In Additive Manufacturing State of the Industry Annual Worldwide Progress Report; Wohlers Associates, Inc.: Fort Collins, CO, USA, 2010. [Google Scholar]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Du Plessis, A.; Yadroitsava, I.; Yadroitsev, I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2020, 187, 108385. [Google Scholar] [CrossRef]
- Druzgalski, C.; Ashby, A.; Guss, G.; King, W.; Roehling, T.T.; Matthews, M.J. Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 34, 101169. [Google Scholar] [CrossRef]
- Leicht, A.; Rashidi, M.; Klement, U.; Hryha, E. Effect of process parameters on the microstructure, tensile strength and productivity of 316L parts produced by laser powder bed fusion. Mater. Charact. 2020, 159, 110016. [Google Scholar] [CrossRef]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Grasso, M.; Colosimo, B.M. Process defects and in-situ monitoring methods in metal powder bed fusion: A review. Meas. Sci. Technol. 2017, 28, 044005. [Google Scholar] [CrossRef]
- Gordon, J.V.; Narra, S.P.; Cunningham, R.W.; Liu, H.; Chen, H.; Suter, R.M.; Beuth, J.L.; Rollett, A.D. Defect structure process maps for laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 36, 101552. [Google Scholar] [CrossRef]
- Magana-Carranza, R.; Sutcliffe, C.; Patterson, E. The effect of processing parameters and material properties on residual forces induced in Laser Powder Bed Fusion (L-PBF). Addit. Manuf. 2021, 46, 102192. [Google Scholar] [CrossRef]
- Qin, J.; Hu, F.; Liu, Y.; Witherell, P.; Wang, C.C.; Rosen, D.W.; Simpson, T.; Lu, Y.; Tang, Q. Research and application of machine learning for additive manufacturing. Addit. Manuf. 2022, 52, 102691. [Google Scholar] [CrossRef]
- Garcia, D.; Wu, Z.; Kim, J.Y.; Hang, Z.Y.; Zhu, Y. Heterogeneous materials design in additive manufacturing: Model calibration and uncertainty-guided model selection. Addit. Manuf. 2019, 27, 61–71. [Google Scholar] [CrossRef]
- Mandache, C. Overview of non-destructive evaluation techniques for metal-based additive manufacturing. Mater. Sci. Technol. 2019, 35, 1007–1015. [Google Scholar] [CrossRef]
- Pandiyan, V.; Drissi-Daoudi, R.; Shevchik, S.; Masinelli, G.; Le-Quang, T.; Logé, R.; Wasmer, K. Semi-supervised Monitoring of Laser powder bed fusion process based on acoustic emissions. Virtual Phys. Prototyp. 2021, 16, 481–497. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Martin, A.A.; Lee, J.R.; Guss, G.; Calta, N.P.; Hammons, J.A.; Nielsen, M.H.; Chaput, K.; Schwalbach, E.; Shah, M.N.; et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 2020, 368, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Vrancken, B.; Ganeriwala, R.K.; Matthews, M.J. Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions: Experiment and simulation. Acta Mater. 2020, 194, 464–472. [Google Scholar] [CrossRef]
- Parab, N.D.; Zhao, C.; Cunningham, R.; Escano, L.I.; Fezzaa, K.; Everhart, W.; Rollett, A.D.; Chen, L.; Sun, T. Ultrafast X-ray imaging of laser–metal additive manufacturing processes. J. Synchrotron Radiat. 2018, 25, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Calta, N.P.; Wang, J.; Kiss, A.M.; Martin, A.A.; Depond, P.J.; Guss, G.M.; Thampy, V.; Fong, A.Y.; Weker, J.N.; Stone, K.H.; et al. An instrument for in-situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Rev. Sci. Instrum. 2018, 89, 055101. [Google Scholar] [CrossRef]
- Pandiyan, V.; Wróbel, R.; Leinenbach, C.; Shevchik, S. Optimizing in-situ monitoring for laser powder bed fusion process: Deciphering acoustic emission and sensor sensitivity with explainable machine learning. J. Mater. Process. Technol. 2023, 321, 118144. [Google Scholar] [CrossRef]
- Larsen, S.; Hooper, P.A. Deep semi-supervised learning of dynamics for anomaly detection in laser powder bed fusion. J. Intell. Manuf. 2022, 33, 457–471. [Google Scholar] [CrossRef]
- Zhao, C.; Parab, N.D.; Li, X.; Fezzaa, K.; Tan, W.; Rollett, A.D.; Sun, T. Critical instability at moving keyhole tip generates porosity in laser melting. Science 2020, 370, 1080–1086. [Google Scholar] [CrossRef]
- Young, Z.A.; Guo, Q.; Parab, N.D.; Zhao, C.; Qu, M.; Escano, L.I.; Fezzaa, K.; Everhart, W.; Sun, T.; Chen, L. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process. Addit. Manuf. 2020, 36, 101438. [Google Scholar] [CrossRef]
- Calta, N.P.; Martin, A.A.; Hammons, J.A.; Nielsen, M.H.; Roehling, T.T.; Fezzaa, K.; Matthews, M.J.; Jeffries, J.R.; Willey, T.M.; Lee, J.R. Pressure dependence of the laser-metal interaction under laser powder bed fusion conditions probed by in-situ X-ray imaging. Addit. Manuf. 2020, 32, 101084. [Google Scholar] [CrossRef]
- Martin, A.A.; Hammons, J.A.; Henderson, H.B.; Calta, N.P.; Nielsen, M.H.; Cook, C.C.; Ye, J.; Maich, A.A.; Teslich, N.E.; Li, T.T.; et al. Enhanced mechanical performance via laser induced nanostructure formation in an additively manufactured lightweight aluminum alloy. Appl. Mater. Today 2021, 22, 100972. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [Google Scholar] [CrossRef]
- Kouraytem, N.; Chiang, P.J.; Jiang, R.; Kantzos, C.; Pauza, J.; Cunningham, R.; Wu, Z.; Tang, G.; Parab, N.; Zhao, C.; et al. Solidification crack propagation and morphology dependence on processing parameters in AA6061 from ultra-high-speed X-ray visualization. Addit. Manuf. 2021, 42, 101959. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Xie, Y.; Li, H.; Zeng, C.; Xu, M.; Zhang, H. In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy. J. Mater. Sci. Technol. 2024, 177, 44–58. [Google Scholar] [CrossRef]
- Martin, A.A.; Wang, J.; DePond, P.J.; Strantza, M.; Forien, J.B.; Gorgannejad, S.; Guss, G.M.; Thampy, V.; Fong, A.Y.; Weker, J.N.; et al. A laser powder bed fusion system for operando synchrotron X-ray imaging and correlative diagnostic experiments at the Stanford Synchrotron Radiation Lightsource. Rev. Sci. Instrum. 2022, 93, 043702. [Google Scholar] [CrossRef] [PubMed]
- Everton, S.K.; Hirsch, M.; Stravroulakis, P.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [Google Scholar] [CrossRef]
- Razvi, S.S.; Feng, S.; Narayanan, A.; Lee, Y.T.T.; Witherell, P. A review of machine learning applications in additive manufacturing. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, CA, USA, 18–21 August 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 59179, p. V001T02A040. [Google Scholar]
- Forien, J.B.; Calta, N.P.; DePond, P.J.; Guss, G.M.; Roehling, T.T.; Matthews, M.J. Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in-situ pyrometry and ex-situ X-ray radiography. Addit. Manuf. 2020, 35, 101336. [Google Scholar] [CrossRef]
- Mohr, G.; Altenburg, S.J.; Ulbricht, A.; Heinrich, P.; Baum, D.; Maierhofer, C.; Hilgenberg, K. In-situ defect detection in laser powder bed fusion by using thermography and optical tomography—Comparison to computed tomography. Metals 2020, 10, 103. [Google Scholar] [CrossRef]
- Tempelman, J.R.; Wachtor, A.J.; Flynn, E.B.; Depond, P.J.; Forien, J.B.; Guss, G.M.; Calta, N.P.; Matthews, M.J. Detection of keyhole pore formations in laser powder-bed fusion using acoustic process monitoring measurements. Addit. Manuf. 2022, 55, 102735. [Google Scholar] [CrossRef]
- Harke, K.J.; Calta, N.; Tringe, J.; Stobbe, D. Laser-based ultrasound interrogation of surface and sub-surface features in advanced manufacturing materials. Sci. Rep. 2022, 12, 3309. [Google Scholar] [CrossRef] [PubMed]
- DePond, P.J.; Fuller, J.C.; Khairallah, S.A.; Angus, J.R.; Guss, G.; Matthews, M.J.; Martin, A.A. Laser-metal interaction dynamics during additive manufacturing resolved by detection of thermally-induced electron emission. Commun. Mater. 2020, 1, 92. [Google Scholar] [CrossRef]
- Smoqi, Z.; Gaikwad, A.; Bevans, B.; Kobir, M.H.; Craig, J.; Abul-Haj, A.; Peralta, A.; Rao, P. Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning. J. Mater. Process. Technol. 2022, 304, 117550. [Google Scholar] [CrossRef]
- Tempelman, J.R.; Wachtor, A.J.; Flynn, E.B.; Depond, P.J.; Forien, J.B.; Guss, G.M.; Calta, N.P.; Matthews, M.J. Sensor Fusion of Pyrometry and Acoustic Measurements for Localized Keyhole Pore Identification in Laser Powder Bed Fusion. J. Mater. Process. Technol. 2022, 308, 117656. [Google Scholar] [CrossRef]
- Meaden, G.T. Electrical Resistance of Metals; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lee, F.W.; Joyce, J.; Boyer, P. Some Earth Resistivity Measurements; United States, Department of Commerce, Bureau of Mines: Washington, DC, USA, 1929; Volume 6171.
- Dahlin, T. The development of DC resistivity imaging techniques. Comput. Geosci. 2001, 27, 1019–1029. [Google Scholar] [CrossRef]
- Brown, B.; Barber, D.; Wang, W.; Lu, L.; Leathard, A.; Smallwood, R.; Hampshire, A.; Mackay, R.; Hatzigalanis, K. Multi-frequency imaging and modelling of respiratory related electrical impedance changes. Physiol. Meas. 1994, 15, A1. [Google Scholar] [CrossRef]
- Karhunen, K.; Seppänen, A.; Lehikoinen, A.; Blunt, J.; Kaipio, J.P.; Monteiro, P.J. Electrical Resistance Tomography for Assessment of Cracks in Concrete. ACI Mater. J. 2010, 107, 523. [Google Scholar]
- Hallaji, M.; Pour-Ghaz, M. A new sensing skin for qualitative damage detection in concrete elements: Rapid difference imaging with electrical resistance tomography. NDT&E Int. 2014, 68, 13–21. [Google Scholar]
- Eggleston, M.; Schwabe, R.; Isaacson, D.; Coffin, L. The application of electric current computed tomography to defect imaging in metals. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: New York, NY, USA, 1990; pp. 455–462. [Google Scholar]
- Daily, W.; Ramirez, A.; Binley, A.; LeBrecque, D. Electrical resistance tomography. Lead. Edge 2004, 23, 438–442. [Google Scholar] [CrossRef]
- Gao, X.; Wei, T.; Dong, H.; Song, Y. Damage detection in 2.5 DC/SiC composites using electrical resistance tomography. J. Eur. Ceram. Soc. 2019, 39, 3583–3593. [Google Scholar] [CrossRef]
- Shu, Y.; Mukherjee, S.; Chang, T.; Gilmore, A.; Tringe, J.W.; Stobbe, D.M.; Loh, K.J. Multi-defect detection in additively manufactured lattice structures using 3D electrical resistance tomography. Sensors 2022, 22, 9167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Miao, Y.; Chai, R.; Zhao, J.; Bai, Y.; Wei, Z.; Ren, S. High-Precision Electrical Impedance Tomography for Electrical Conductivity of Metallic Materials. Adv. Mater. Sci. Eng. 2022, 2022, 3611691. [Google Scholar] [CrossRef]
- Cultrera, A.; Serazio, D.; Zurutuza, A.; Centeno, A.; Txoperena, O.; Etayo, D.; Cordon, A.; Redo-Sanchez, A.; Arnedo, I.; Ortolano, M.; et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci. Rep. 2019, 9, 10655. [Google Scholar] [CrossRef]
- Aghasi, A.; Miller, E.L. Sensitivity calculations for Poisson’s equation via the adjoint field method. IEEE Geosci. Remote Sens. Lett. 2011, 9, 237–241. [Google Scholar] [CrossRef]
- Matolich, J., Jr. Thermal Conductivity and Electrical Resistivity of Type 316 Stainless Steel from 0 to 1800f; Technical Report; NASA: Washington, DC, USA, 1965.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukherjee, S.; Benavidez, E.; Crumb, M.; Calta, N.P. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion. Sensors 2024, 24, 523. https://doi.org/10.3390/s24020523
Mukherjee S, Benavidez E, Crumb M, Calta NP. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion. Sensors. 2024; 24(2):523. https://doi.org/10.3390/s24020523
Chicago/Turabian StyleMukherjee, Saptarshi, Edward Benavidez, Michael Crumb, and Nicholas P. Calta. 2024. "An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion" Sensors 24, no. 2: 523. https://doi.org/10.3390/s24020523