Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers
<p>Schematic diagram of preparation of nanoAg@Cu. The macro (<b>a</b>) and microscopic (<b>b</b>) schematic diagram of nanoAg@Cu substrate fabrication process. Ag+ was reduced to Ag atom when it approached the Cu(0) surface (I), subsequently formed Ag atoms acted as epitaxial growth materials (II) and the epitaxial growth of Ag on Cu(0) surface to form the S–K mode and generate an island shape (III). The SEM and corresponding element mapping images of the front side (<b>c</b>) and cross-section (<b>d</b>) of the nanoAg@Cu from one designed condition, scale bar: 500 nm. (<b>e</b>) Distribution of particle size in (<b>c</b>).</p> "> Figure 2
<p>Characteristics of nanoAg@Cu adjusted by HS-PEG-NH<sub>2</sub>. (<b>a</b>) SEM image. (<b>b</b>) Distribution of particle size in (<b>a</b>). (<b>c</b>) X-ray photoelectron spectroscopy. (<b>d</b>) UV–vis–VIR absorption spectra. Scale bar: 1 μm.</p> "> Figure 3
<p>Effects of the nanoAg@Cu substrates derived from different -NH<sub>2</sub> ligands on SERS signal. (<b>a</b>) Chemical structure of synthetic 2DP. (<b>b</b>) Microscopic image of 2DP. Scale bar: 100 μm. (<b>c</b>) SPM image of 2DP. Scale bar: 10 μm. (<b>d</b>) Schematic diagram of nanoAg@Cu complexed with 2DPs used for characteristics of Raman spectrum. (<b>e</b>) SERS spectrum of 2DPs from substrates regulated by the -NH<sub>2</sub> ligands. The -NH<sub>2</sub> ligands are diethylamine (DEA), 2-Mercaptoethylamine (MEA), H<sub>2</sub>N-PEG-NH<sub>2</sub>, and HS-PEG-NH<sub>2</sub>, respectively. (<b>f</b>) Comparison chart of relative integrated area of Raman signal intensity in (<b>e</b>).</p> "> Figure 4
<p>Effects of the nanoAg@Cu substrates derived from different concentrations of AgNO3 on SERS signal and reproducibility characteristics. (<b>a</b>) SERS spectrum of 2DPs from substrates obtained by changing the concentration of AgNO3 solution with 0.5 mM, 1 mM, 5 mM, and 10 mM. (<b>b</b>) Comparison chart of integrated area of Raman signal intensity in (<b>a</b>). (<b>c</b>) The repeatability test results of the SERS signals from 30 points of nanoAg@Cu obtained from 5 mM AgNO3 solution.</p> "> Figure 5
<p>Characterization of 2DPs with different thicknesses. Microscopic images of 2DPs with thicknesses of 3 nm (<b>a</b>) and 11 nm (<b>b</b>). SPM images of 2DPs with thicknesses of 3 nm (<b>c</b>) and 11 nm (<b>d</b>). SERS signals of 2DP with different thicknesses (<b>e</b>) and layers (<b>f</b>). The scale bar in (<b>a</b>,<b>b</b>) is 100 μm. The scale bar in (<b>c</b>,<b>d</b>) is 1 μm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Fabrication of NanoAg@Cu
2.3. NanoAg@Cu Used for the SERS Detection of 2DPs
2.4. Characterization
3. Results and Discussion
3.1. The Fabrication and Characterization of NanoAg@Cu
3.2. The NanoAg@Cu Used for Detection of 2DPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, R.; Zhang, T.; Feng, X. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chem. Rev. 2018, 118, 6189–6235. [Google Scholar] [CrossRef]
- Liu, K.; Qi, H.; Dong, R.; Shivhare, R.; Addicoat, M.; Zhang, T.; Sahabudeen, H.; Heine, T.; Mannsfeld, S.; Kaiser, U.; et al. On-Water Surface Synthesis of Crystalline, Few-Layer Two-Dimensional Polymers Assisted by Surfactant Monolayers. Nat. Chem. 2019, 11, 994–1000. [Google Scholar] [CrossRef]
- Feng, X.; Schlüter, A.D. Towards Macroscopic Crystalline 2D Polymers. Angew. Chem. Int. Ed. 2018, 57, 13748–13763. [Google Scholar] [CrossRef] [PubMed]
- Aitchison, C.M.; Gonzalez-Carrero, S.; Yao, S.; Benkert, M.; Ding, Z.; Young, N.P.; Willner, B.; Moruzzi, F.; Lin, Y.; Tian, J.; et al. Templated 2D Polymer Heterojunctions for Improved Photocatalytic Hydrogen Production. Adv. Mater. 2023, 2300037. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.M.; Strauss, M.J.; Corcos, A.R.; Hirani, Z.; Ji, W.; Hamachi, L.S.; Aguilar-Enriquez, X.; Chavez, A.D.; Smith, B.J.; Dichtel, W.R. Two-Dimensional Polymers and Polymerizations. Chem. Rev. 2022, 122, 442–564. [Google Scholar] [CrossRef]
- Sahabudeen, H.; Qi, H.; Glatz, B.A.; Tranca, D.; Dong, R.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; et al. Wafer-Sized Multifunctional Polyimine-Based Two-Dimensional Conjugated Polymers with High Mechanical Stiffness. Nat. Commun. 2016, 7, 13461. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Baburin, I.A.; Han, P.; Yang, C.; Fu, X.; Yao, Y.; Li, J.; Cánovas, E.; Seifert, G.; Chen, J.; et al. Interfacial Approach toward Benzene-Bridged Polypyrrole Film–Based Micro-Supercapacitors with Ultrahigh Volumetric Power Density. Adv. Funct. Mater. 2020, 30, 1908243. [Google Scholar] [CrossRef]
- Zheng, Z.; Grünker, R.; Feng, X. Synthetic Two-Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation. Adv. Mater. 2016, 28, 6529–6545. [Google Scholar] [CrossRef]
- Knebel, A.; Caro, J. Metal–Organic Frameworks and Covalent Organic Frameworks as Disruptive Membrane Materials for Energy-Efficient Gas Separation. Nat. Nanotechnol. 2022, 17, 911–923. [Google Scholar] [CrossRef]
- Ying, Y.; Peh, S.B.; Yang, H.; Yang, Z.; Zhao, D. Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation. Adv. Mater. 2022, 34, 2104946. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage. Adv. Mater. 2016, 28, 6104–6135. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, N.; Xu, Y.; Pang, H. Two-Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chem. Eur. J. 2020, 26, 6402–6422. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, G.; De Marchi, F.; Hamzehpoor, E.; MacLean, O.; Rajeswara Rao, M.; Chen, Y.; Besteiro, L.V.; Dettmann, D.; Ferrari, L.; Frezza, F.; et al. Synthesis of Mesoscale Ordered Two-Dimensional π-Conjugated Polymers with Semiconducting Properties. Nat. Mater. 2020, 19, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, D.; He, L.; Qin, S.; Wang, J.; Razal, J.M.; Kotov, N.A.; Lei, W. Bio-Inspired Nanocomposite Membranes for Osmotic Energy Harvesting. Joule 2020, 4, 247–261. [Google Scholar] [CrossRef]
- Li, H.; Xie, Z.; Yang, C.; Kwon, J.; Lainé, A.; Dun, C.; Galoustian, A.V.; Li, X.; Liu, P.; Urban, J.J.; et al. Flexible All-Organic Nanocomposite Films Interlayered with In Situ Synthesized Covalent Organic Frameworks for Electrostatic Energy Storage. Nano Energy 2023, 113, 108544. [Google Scholar] [CrossRef]
- Zhang, T.; Qi, H.; Liao, Z.; Horev, Y.D.; Panes-Ruiz, L.A.; Petkov, P.S.; Zhang, Z.; Shivhare, R.; Zhang, P.; Liu, K.; et al. Engineering Crystalline Quasi-Two-Dimensional Polyaniline Thin Film with Enhanced Electrical and Chemiresistive Sensing Performances. Nat. Commun. 2019, 10, 4225. [Google Scholar] [CrossRef]
- Mei, A.; Chen, W.; Yang, Z.; Zhou, M.; Jin, W.; Yang, S.; Chen, K.; Liu, Y. Study of Intermolecular Reconfiguration of Flexible COF-5 Film and Its Ultra-High Chemiresistive Humidity Sensitivity. Angew. Chem. Int. Ed. 2023, 62, e202301440. [Google Scholar] [CrossRef]
- Chen, X.; Kong, L.; Mehrez, J.A.-A.; Fan, C.; Quan, W.; Zhang, Y.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; et al. Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. Nano-Micro Lett. 2023, 15, 149. [Google Scholar] [CrossRef]
- Servalli, M.; Schlüter, A.D. Synthetic Two-Dimensional Polymers. Annu. Rev. Mater. Res. 2017, 47, 361–389. [Google Scholar] [CrossRef]
- Wang, W.; Shao, F.; Kröger, M.; Zenobi, R.; Schlüter, A.D. Structure Elucidation of 2D Polymer Monolayers Based on Crystallization Estimates Derived from Tip-Enhanced Raman Spectroscopy (TERS) Polymerization Conversion Data. J. Am. Chem. Soc. 2019, 141, 9867–9871. [Google Scholar] [CrossRef]
- Zheng, L.-Q.; Servalli, M.; Schlüter, A.D.; Zenobi, R. Tip-Enhanced Raman Spectroscopy for Structural Analysis of Two-Dimensional Covalent Monolayers Synthesized on Water and on Au(111). Chem. Sci. 2019, 10, 9673–9678. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Weckhuysen, B.M.; Wain, A.J.; Pollard, A.J. Nanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy. Nat. Protoc. 2019, 14, 1169–1193. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.; Shao, F.; Baljozovic, M.; Moradi, M.; Zhang, Y.; Jung, T.; Thompson, W.B.; King, B.T.; Zenobi, R.; Schlüter, A.D. Structural Characterization of a Covalent Monolayer Sheet Obtained by Two-Dimensional Polymerization at an Air/Water Interface. Angew. Chem. Int. Ed. 2017, 56, 15262–15266. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Dai, W.; Zhang, Y.; Zhang, W.; Schlüter, A.D.; Zenobi, R. Chemical Mapping of Nanodefects within 2D Covalent Monolayers by Tip-Enhanced Raman Spectroscopy. ACS Nano 2018, 12, 5021–5029. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ai, J.; Kumar, P.; You, E.; Zhou, X.; Liu, X.; Tian, Z.; Bouř, P.; Duan, Y.; Han, L.; et al. Enantiomeric Discrimination by Surface-Enhanced Raman Scattering–Chiral Anisotropy of Chiral Nanostructured Gold Films. Angew. Chem. Int. Ed. 2020, 59, 15226–15231. [Google Scholar] [CrossRef] [PubMed]
- Dick, S.; Konrad, M.P.; Lee, W.W.Y.; McCabe, H.; McCracken, J.N.; Rahman, T.M.D.; Stewart, A.; Xu, Y.; Bell, S.E.J. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials. Adv. Mater. 2016, 28, 5705–5711. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Zhao, L.; Liu, H.; Yan, M.; Zhang, X.; Mochizuki, K.; Yang, S. Metal-Organic Framework Template-Guided Electrochemical Lithography on Substrates for SERS Sensing Applications. Nat. Commun. 2023, 14, 5860. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Y.; Li, C.; Ye, Z.; Bell, S.E.J. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials. Acc. Chem. Res. 2023, 56, 2072–2083. [Google Scholar] [CrossRef]
- Lane, L.A.; Qian, X.; Nie, S. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem. Rev. 2015, 115, 10489–10529. [Google Scholar] [CrossRef]
- Li, H.; Haruna, S.A.; Sheng, W.; Bei, Q.; Ahmad, W.; Zareef, M.; Chen, Q.; Ding, Z. SERS-Activated Platforms for Chemical Contaminants in Food: Probes, Encoding Methods, and Detection. TrAC Trends Anal. Chem. 2023, 169, 117365. [Google Scholar] [CrossRef]
- Li, D.; Yue, W.; Gao, P.; Gong, T.; Wang, C.; Luo, X. Surface-Enhanced Raman Spectroscopy (SERS) for the Characterization of Atmospheric Aerosols: Current Status and Challenges. TrAC Trends Anal. Chem. 2024, 170, 117426. [Google Scholar] [CrossRef]
- Liu, K.; Bai, Y.; Zhang, L.; Yang, Z.; Fan, Q.; Zheng, H.; Yin, Y.; Gao, C. Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis. Nano Lett. 2016, 16, 3675–3681. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhang, Q.; Lee, J.Y.; Wang, D.I.C. The Synthesis of SERS-Active Gold Nanoflower Tags for In Vivo Applications. ACS Nano 2008, 2, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Mei, R.; Wang, Y.; Yu, Q.; Yin, Y.; Zhao, R.; Chen, L. Gold Nanorod Array-Bridged Internal-Standard SERS Tags: From Ultrasensitivity to Multifunctionality. ACS Appl. Mater. Interfaces 2020, 12, 2059–2066. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, J.; Lai, W.; Yang, X.; Meng, J.; Su, L.; Gu, C.; Jiang, T.; Pun, E.Y.B.; Shao, L.; et al. Irreversible Accumulated SERS Behavior of the Molecule-Linked Silver and Silver-Doped Titanium Dioxide Hybrid System. Nat. Commun. 2020, 11, 1785. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Q.; Hou, J.; Li, Y.; Li, M.; Song, Y. Bioinspired Micropatterned Superhydrophilic Au-Areoles for Surface-Enhanced Raman Scattering (SERS) Trace Detection. Adv. Funct. Mater. 2018, 28, 1800448. [Google Scholar] [CrossRef]
- Shen, W.; Lin, X.; Jiang, C.; Li, C.; Lin, H.; Huang, J.; Wang, S.; Liu, G.; Yan, X.; Zhong, Q.; et al. Reliable Quantitative SERS Analysis Facilitated by Core–Shell Nanoparticles with Embedded Internal Standards. Angew. Chem. Int. Ed. 2015, 54, 7308–7312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yu, Q.; Li, H.; Mustapha, A.; Lin, M. Standing Gold Nanorod Arrays as Reproducible SERS Substrates for Measurement of Pesticides in Apple Juice and Vegetables. J. Food Sci. 2015, 80, N450–N458. [Google Scholar] [CrossRef]
- He, D.; Hu, B.; Yao, Q.-F.; Wang, K.; Yu, S.-H. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano 2009, 3, 3993–4002. [Google Scholar] [CrossRef]
- Jana, N.R.; Pal, T. Anisotropic Metal Nanoparticles for Use as Surface-Enhanced Raman Substrates. Adv. Mater. 2007, 19, 1761–1765. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Halas, N.J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef] [PubMed]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z.; Chai, G.; Löffler, M.; Olianas, D.; Milani, A.; Xu, S.; Tommasini, M.; et al. Copper-Surface-Mediated Synthesis of Acetylenic Carbon-Rich Nanofibers for Active Metal-Free Photocathodes. Nat. Commun. 2018, 9, 1140. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Zhang, T.; Du, Y.; Amin, I.; Marschelke, C.; Jordan, R. “On Water” Surface-Initiated Polymerization of Hydrophobic Monomers. Angew. Chem. Int. Ed. 2018, 57, 16380–16384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liao, Z.; Sandonas, L.M.; Dianat, A.; Liu, X.; Xiao, P.; Amin, I.; Gutierrez, R.; Chen, T.; Zschech, E.; et al. Polymerization Driven Monomer Passage through Monolayer Chemical Vapour Deposition Graphene. Nat. Commun. 2018, 9, 4051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Du, Y.; Müller, F.; Amin, I.; Jordan, R. Surface-Initiated Cu(0) Mediated Controlled Radical Polymerization (SI-CuCRP) Using a Copper Plate. Polym. Chem. 2015, 6, 2726–2733. [Google Scholar] [CrossRef]
- Zhang, T.; Benetti, E.M.; Jordan, R. Surface-Initiated Cu(0)-Mediated CRP for the Rapid and Controlled Synthesis of Quasi-3D Structured Polymer Brushes. ACS Macro Lett. 2019, 8, 145–153. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Huang, Y.; Chen, K.; Cheng, Q.; Lin, H.; Xiao, P.; Liang, Y.; Qiang, M.; Su, F.; et al. Asymmetrical Molecular Decoration of Gold Nanorods for Engineering of Shape-Controlled AuNR@Ag Core–Shell Nanostructures. Langmuir 2019, 35, 16900–16906. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Gao, C.; Guo, L.; Chi, M.; Ijiro, K.; Maeda, M.; Yin, Y. Island Growth in the Seed-Mediated Overgrowth of Monometallic Colloidal Nanostructures. Chem 2017, 3, 678–690. [Google Scholar] [CrossRef]
- Li, L.; Fijneman, A.J.; Kaandorp, J.A.; Aizenberg, J.; Noorduin, W.L. Directed Nucleation and Growth by Balancing Local Supersaturation and Substrate/Nucleus Lattice Mismatch. Proc. Natl. Acad. Sci. USA 2018, 115, 3575–3580. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Gilroy, K.D.; Peng, H.-C.; Xia, X. Seed-Mediated Growth of Colloidal Metal Nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 60–95. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Zhang, S.; Yang, Z.; Tsung, C.-K.; Stucky, G.D.; Sun, L.; Wang, J.; Yan, C. Glutathione- and Cysteine-Induced Transverse Overgrowth on Gold Nanorods. J. Am. Chem. Soc. 2007, 129, 6402–6404. [Google Scholar] [CrossRef]
- Yin, X.; Shi, M.; Wu, J.; Pan, Y.-T.; Gray, D.L.; Bertke, J.A.; Yang, H. Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry. Nano Lett. 2017, 17, 6146–6150. [Google Scholar] [CrossRef]
- Kumar, D.V.R.; Kim, I.; Zhong, Z.; Kim, K.; Lee, D.; Moon, J. Cu(II)–Alkyl Amine Complex Mediated Hydrothermal Synthesis of Cu Nanowires: Exploring the Dual Role of Alkyl Amines. Phys. Chem. Chem. Phys. 2014, 16, 22107–22115. [Google Scholar] [CrossRef]
- Sahabudeen, H.; Qi, H.; Ballabio, M.; Položij, M.; Olthof, S.; Shivhare, R.; Jing, Y.; Park, S.; Liu, K.; Zhang, T.; et al. Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis. Angew. Chem. 2020, 132, 6084–6092. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Liz-Marzán, L.M. SERS Detection of Small Inorganic Molecules and Ions. Angew. Chem. Int. Ed. 2012, 51, 11214–11223. [Google Scholar] [CrossRef]
- Bell, S.E.J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M.L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew. Chem. Int. Ed. 2020, 59, 5454–5462. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Tan, R.; Yang, Y.; Yang, H.; Wang, J.; Yin, X.; Wu, D.; Zhang, T. Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers. Sensors 2024, 24, 474. https://doi.org/10.3390/s24020474
Zhao W, Tan R, Yang Y, Yang H, Wang J, Yin X, Wu D, Zhang T. Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers. Sensors. 2024; 24(2):474. https://doi.org/10.3390/s24020474
Chicago/Turabian StyleZhao, Wenkai, Runxiang Tan, Yanping Yang, Haoyong Yang, Jianing Wang, Xiaodong Yin, Daheng Wu, and Tao Zhang. 2024. "Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers" Sensors 24, no. 2: 474. https://doi.org/10.3390/s24020474
APA StyleZhao, W., Tan, R., Yang, Y., Yang, H., Wang, J., Yin, X., Wu, D., & Zhang, T. (2024). Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers. Sensors, 24(2), 474. https://doi.org/10.3390/s24020474