Novel Deposition Method of Crosslinked Polyethylene Thin Film for Low-Refractive-Index Mid-Infrared Optical Coatings
<p>Transmittance spectrum of PE in the mid-IR region. The absorption peaks are at 1466 cm<sup>−1</sup> and 723 cm<sup>−1</sup>. The transparent region of PE in the mid-IR is indicated by green arrows, and the LWIR region is indicated by red arrows.</p> "> Figure 2
<p>(<b>A</b>) Schematic showing a vacuum chamber for depositing crosslinked polyethylene thin films. Electrons generated in the tungsten coil are accelerated to the sample wafer due to the electric potential. Polyethylene monomers are crosslinked as soon as they are deposited on the sample by accelerated electrons. (<b>B</b>) Digital camera image of PE thin film. On the left is a PE thin film on a silicon wafer that has not been immersed in toluene. The image on the right is after immersion in toluene. (<b>C</b>) Digital camera image of the XPE thin film. On the left is a PE thin film on a silicon wafer that has not been immersed in toluene. The image on the right is after immersion in toluene. (<b>D</b>) Digital camera image when Ge was deposited on PE (left) and XPE (right). When Ge is deposited on PE, cracks occur, whereas, in the case of XPE, there is no crack on the film.</p> "> Figure 3
<p>Transmittance spectrum of XPE in the mid-IR region shows an absorption peak around 1720 cm<sup>−1</sup> area. This peak corresponds to the C=O stretch bond, and it is attributed to the outgassing of oxygen during the evaporation. The XPE remains transparent in the LWIR region.</p> "> Figure 4
<p>(<b>A</b>) Monte-Carlo simulation of trajectories of 200 electrons with 1 keV energy in a polyethylene layer. Blue trajectories show absorbed electrons, while red ones indicate backscattered electrons. (<b>B</b>) Absorbed energy density at each depth in a polyethylene layer calculated by using 100,000 number of electrons. The absorbed energy density curves have their maxima at 21.1 nm for 1 keV electrons and 1.35 μm for 10 keV electrons, respectively.</p> "> Figure 5
<p>(<b>A</b>) Schematic diagram showing the design of a mid-IR optical filter composed of two DBRs made of Ge and XPE. (<b>B</b>) SEM image of a DBR consisting of two pairs of Ge and XPE layers. (<b>C</b>) Transmission spectrum of the Ge/XPE mirror in (<b>B</b>). (<b>D</b>) Transmission spectra of a Ge/XPE filter when two DBRs are combined with an air cavity in between. Inset is a magnified spectrum at transmittance peak position. (<b>E</b>) Calculated electric field intensity distribution inside the cavity when resonant wavelength light passes through the filter.</p> "> Figure 6
<p>(<b>A</b>,<b>C</b>,<b>E</b>) Schematic diagrams of two pairs of Ge/XPE DBR (<b>A</b>), two pairs of Ge/ZnSe (<b>C</b>), and four pairs of Ge/ZnSe (<b>E</b>). (<b>B</b>,<b>D</b>,<b>F</b>) Calculated transmittance spectra of two pairs of Ge/XPE DBR (<b>B</b>), two pairs of Ge/ZnSe (<b>D</b>), and four pairs of Ge/ZnSe (<b>F</b>). Red arrows in (<b>B</b>,<b>F</b>) indicate the bandwidth of the free spectral range.</p> ">
Abstract
:1. Introduction
2. Deposition Method of XPE Thin Film
3. Monte Carlo Simulation
4. Mid-IR Optical Filter Fabrication
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy; Cengage Learning: Stamford, CT, USA, 2015. [Google Scholar]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectroscopy; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 2001, 64, 1533–1601. [Google Scholar] [CrossRef]
- Jeon, T.; Nateghi, A.; Jones, W.M.; Choi, C.; Cardenas, J.P.; Ross, C.; Scherer, A. Development of a Compact and Robust Mid-Infrared Spectrometer by Using a Silicon/Air Hyperspectral Filter. ACS Photonics 2022, 9, 68–73. [Google Scholar] [CrossRef]
- Muraviev, A.V.; Vodopyanov, K.L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics 2018, 12, 209–214. [Google Scholar] [CrossRef]
- Scalari, G.; Faist, J.; Picque, N. On-chip mid-infrared and THz frequency combs for spectroscopy. Appl. Phys. Lett. 2019, 114, 150401. [Google Scholar] [CrossRef]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Leitis, A.; Tittl, A.; Liu, M.; Lee, B.H.; Gu, M.B.; Kivshar, Y.S.; Altug, H. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 2019, 5, eaaw2871. [Google Scholar] [CrossRef] [PubMed]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Burnett, J.H.; Kaplan, S.G.; Stover, E.; Phenis, A. Refractive index measurement of Ge. Proc. SPIE 2016, 9974, 99740X. [Google Scholar]
- Chandler-Horowitz, D.; Amirtharaj, P.M. High-accuracy; midinfrared (450 cm−1 ⩽ ω ⩽ 4000 cm−1) refractive index values of silicon. J. Appl. Phys. 2005, 97, 123526. [Google Scholar] [CrossRef]
- Blodgett, D.W.; Yang, D.; Walts, S.C.; Thomas, M.E. Measurement of the temperature-dependent refractive index and relative photoelastic constant of zinc sulfide. Proc. SPIE 2001, 4375, 224–234. [Google Scholar]
- Qi, H.; Zhang, X.; Jiang, M.; Wang, Q.; Li, D. Optical Constants of Zinc Selenide in Visible and Infrared Spectral Ranges. J. Appl. Spectrosc. 2017, 84, 679–682. [Google Scholar] [CrossRef]
- Emadi, A.; Wu, H.; de Graaf, G.; Wolffenbuttel, R. Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter. Opt. Express 2012, 20, 489. [Google Scholar] [CrossRef] [PubMed]
- Musfir, P.N.; Nampoori, V.P.N.; Thomas, S. Variations in the linear and nonlinear refractive indices of chalcogenide glass thin films for photonic applications. Mater. Res. Express 2019, 6, 115207. [Google Scholar] [CrossRef]
- Lin, R.; Chen, F.; Zhang, X.; Huang, Y.; Song, B.; Dai, S.; Zhang, X.; Ji, W. Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system. Opt. Express 2017, 25, 25674–25688. [Google Scholar] [CrossRef]
- Businaro, L.; Limaj, O.; Giliberti, V.; Ortolani, M.; Di Gaspare, A.; Grenci, G.; Lupi, S. Mid-infrared nanoantenna arrays on silicon and CaF2 substrates for sensing applications. Microelectron. Eng. 2012, 97, 197–200. [Google Scholar] [CrossRef]
- Su, W.; Li, B.; Liu, D.; Zhang, F. The determination of infrared optical constants of rare earth fluorides by classical Lorentz oscillator model. J. Phys. Appl. Phys. 2007, 40, 3343–3347. [Google Scholar] [CrossRef]
- Wang, Y.; Abe, Y.; Matsuura, Y.; Miyagi, M.; Uyama, H. Refractive indices and extinction coefficients of polymers for the mid-infrared region. Appl. Opt. 1998, 37, 7091–7095. [Google Scholar] [CrossRef]
- Mellbring, O.; Øiseth, S.K.; Krozer, A.; Lausmaa, J.; Hjertberg, T. Spin Coating and Characterization of Thin High-Density Polyethylene Films. Macromolecules 2001, 34, 7496–7503. [Google Scholar] [CrossRef]
- Iuff, P.P.; White, M. Thermal degradation of polyethylene and polytetrafluoroethylene during vacuum evaporation. Vacuum 1968, 18, 437–440. [Google Scholar]
- Qu, B.; Ranby, B. Radiation crosslinking of polyethylene with electron beam at different temperature. Polym. Eng. Sci. 1995, 35, 1161–1166. [Google Scholar] [CrossRef]
- Tretinnikov, O.N.; Ogata, S.; Ikada, Y. Surface crosslinking of polyethylene by electron beam irradiation in air. Polymer 1998, 39, 6115–6120. [Google Scholar] [CrossRef]
- Gulmine, J.; Janissek, P.; Heise, H.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- De Geyter, N.; Morent, R.; Leys, C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surf. Interface Anal. 2008, 40, 608–611. [Google Scholar] [CrossRef]
- Martyniuk, M.; Silva, K.K.M.B.D.; Putrino, G.; Kala, H.; Tripathi, D.K.; Gill, G.S.; Faraone, L. Optical Microelectromechanical Systems Technologies for Spectrally Adaptive Sensing and Imaging. Adv. Funct. Mater. 2022, 32, 2103153. [Google Scholar] [CrossRef]
- Nottingham, W.B. Thermionic emission from tungsten and thoriated tungsten filaments. Phys. Rev. 1936, 49, 78–97. [Google Scholar] [CrossRef]
- Drouin, D.; Couture, A.R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users. Scanning 2007, 29, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Khlyustova, A.; Cheng, Y.; Yang, R. Vapor-deposited functional polymer thin films in biological applications. J. Mater. Chem. B 2020, 8, 6588–6609. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, D.; Wang, D.; Luan, H.; Chen, X.; Yang, W. In Situ Polymerized MXene/Polypyrrole/Hydroxyethyl Cellulose-Based Flexible Strain Sensor Enabled by Machine Learning for Handwriting Recognition. ACS Appl. Mater. Interfaces 2023, 15, 5811–5821. [Google Scholar] [CrossRef]
- Elanjeitsenni, V.P.; Vadivu, K.S. A review on thin films, conducting polymers as sensor devices. Mater. Res. Express 2022, 9, 022001. [Google Scholar] [CrossRef]
Materials | Refractive Index at 10 µm | Transparent on between 5 µm to 20 µm |
---|---|---|
Polyethylene | 1.53 | Transparent up to 20 µm, except for two peaks positioned near 6.8 µm and 13.8 µm |
Chalcogenide Glass | Over 2.5 (change depending on the composition) | Transparent up to 20 µm |
ZnS | 2.2 | Transparent up to 14 µm |
ZnSe | 2.4 | Transparent up to 14 µm and transmittance gradually decrease up to 20 µm |
CaF2 | 1.3 | Transparent up to 8 µm and transmittance gradually decrease and become zero at about 12 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, T.; Myung, J.; Choi, C.; Shayegan, K.; Lewis, S.M.; Scherer, A. Novel Deposition Method of Crosslinked Polyethylene Thin Film for Low-Refractive-Index Mid-Infrared Optical Coatings. Sensors 2023, 23, 9810. https://doi.org/10.3390/s23249810
Jeon T, Myung J, Choi C, Shayegan K, Lewis SM, Scherer A. Novel Deposition Method of Crosslinked Polyethylene Thin Film for Low-Refractive-Index Mid-Infrared Optical Coatings. Sensors. 2023; 23(24):9810. https://doi.org/10.3390/s23249810
Chicago/Turabian StyleJeon, Taeyoon, Jieun Myung, Changsoon Choi, Komron Shayegan, Scott M. Lewis, and Axel Scherer. 2023. "Novel Deposition Method of Crosslinked Polyethylene Thin Film for Low-Refractive-Index Mid-Infrared Optical Coatings" Sensors 23, no. 24: 9810. https://doi.org/10.3390/s23249810