Thermo-Optic Response and Optical Bistablility of Integrated High-Index Doped Silica Ring Resonators
<p>(<b>a</b>,<b>b</b>) Schematic and microscopic image of an add-drop microring resonator (MRR) made from high-index doped silica, respectively. Inset shows zoomed-in view of the coupling region. (<b>c</b>) Measured transmission spectra of the doped silica MRR for (<b>i</b>) TE and (<b>ii</b>) TM polarizations. (<b>d</b>) Zoomed-in views of single (<b>i</b>) TE- and (<b>ii</b>) TM-polarized resonances at ~1550.381 nm and ~1550.288 nm, respectively.</p> "> Figure 2
<p>(<b>a</b>) Measured (<b>i</b>) TE- and (<b>ii</b>) TM-polarized transmission spectra of high-index doped silica MRR when the chip temperature changes from 23 °C to 30 °C, respectively. The results presented depict a resonance with TE polarization positioned between two resonances with TM polarization (TM1 and TM2). (<b>b</b>) Resonance wavelength shifts versus chip temperature for (<b>i</b>) TE and (<b>ii</b>) TM polarizations extracted from (<b>a</b>). (<b>c</b>) Changes in waveguide effective refractive indices versus chip temperature extracted from (<b>b</b>). (<b>d</b>) Thermo-optic coefficient μ versus chip temperature extracted from (<b>c</b>).</p> "> Figure 3
<p>(<b>a</b>) Measured transmission spectra of high-index doped silica MRR at varying input powers for (<b>i</b>) TE and (<b>ii</b>) TM modes. (<b>b</b>) Measured (data points) and fitted (solid curves) resonance wavelength shifts versus input power. (<b>c</b>) Waveguide effective refractive index changes versus input power extracted from (<b>b</b>). (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>n</mi> </mrow> <mo>-</mo> </mover> </mrow> <mrow> <mrow> <mn>2</mn> <mo>,</mo> <mo> </mo> </mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </mrow> </semantics></math> versus input power extracted from (<b>c</b>). (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>n</mi> </mrow> <mo>-</mo> </mover> </mrow> <mrow> <mrow> <mn>2</mn> <mo>,</mo> <mo> </mo> </mrow> <mrow> <mi mathvariant="italic">doped</mi> <mo> </mo> <mi mathvariant="italic">silica</mi> </mrow> </mrow> </msub> </mrow> </semantics></math> versus input power extracted from (<b>d</b>).</p> "> Figure 4
<p>Measured output power versus input power with initial wavelength detunings of (<b>a</b>) <span class="html-italic">δ</span> = ~1.3, (<b>b</b>) <span class="html-italic">δ</span> = ~1.5, and (<b>c</b>) <span class="html-italic">δ</span> = ~1.7. In (<b>a</b>–<b>c</b>), (<b>i</b>) and (<b>ii</b>) show the results for TE- and TM-polarized resonances centered at ~1550.3758 nm and ~1550.2826 nm, respectively. Point-by-point measurements were taken at an average rate of ~1 Hz. The red and blue arrows indicate the increasing and decreasing of the input power, respectively.</p> "> Figure 5
<p>Measured (data points) and theoretical (solid curves) output power versus input power with initial wavelength detunings of (<b>a</b>) <span class="html-italic">δ</span> = ~1.3, (<b>b</b>) <span class="html-italic">δ</span> = ~1.5, and (<b>c</b>) <span class="html-italic">δ</span> = ~1.7. In (<b>a</b>–<b>c</b>), (<b>i</b>) and (<b>ii</b>) show the results for TE- and TM-polarized resonances. The red and blue arrows indicate the increasing and decreasing of the input power, respectively.</p> "> Figure 6
<p>(<b>a</b>) Optical mode profiles of high-index doped silica waveguide for (<b>i</b>) TE and (<b>ii</b>) TM modes. (<b>b</b>) Temperature distribution profiles of high-index doped silica waveguide for (<b>i</b>) TE and (<b>ii</b>) TM modes. In (<b>a</b>,<b>b</b>), the input CW power is ~16 mW, and the initial temperature is assumed to be at the room temperature of 23 °C. (<b>c</b>) Calculated temperature variation versus input power for (<b>i</b>) TE and (<b>ii</b>) TM modes. (<b>d</b>) Thermal conductivity <span class="html-italic">K</span> versus input power for (<b>i</b>) TE and (<b>ii</b>) TM modes.</p> ">
Abstract
:1. Introduction
2. Device Fabrication and Characterization
3. Thermo-Optic Coefficient
4. Optically Induced Thermo-Optic Response
5. Optical Bistability
6. Thermal Conductivity
7. Comparison with Other Integrated Platform Materials
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, W.; Han, T.; Zheng, X.; Li, J.; Li, B.; Fan, S.; Qiu, C.-W. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 2021, 6, 488–507. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Zheng, C.; Hong, Y.; Xu, Z.; Wang, H.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 2020, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Wang, Y.; Qiu, C.; Chen, J. Thermo-optic all-optical devices based on two-dimensional materials. Photon. Res. 2018, 6, C22–C28. [Google Scholar] [CrossRef]
- Desiatov, B.; Goykhman, I.; Levy, U. Direct Temperature Mapping of Nanoscale Plasmonic Devices. Nano Lett. 2014, 14, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yu, H.; Zhang, Q.; Li, Y.; Chen, W.; Wang, Y.; Yang, J. Thermally enhanced responsivity in an all-silicon optical power monitor based on defect-mediated absorption. Photonics Res. 2021, 9, 2205. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Tan, M.; Xu, X.; Li, Y.; Morandotti, R.; Mitchell, A.; Moss, D.J. Applications of optical microcombs. Adv. Opt. Photon. 2023, 15, 86–175. [Google Scholar] [CrossRef]
- Herr, T.; Brasch, V.; Jost, J.D.; Wang, C.Y.; Kondratiev, N.M.; Gorodetsky, M.L.; Kippenberg, T.J. Temporal solitons in optical microresonators. Nat. Photonics 2014, 8, 145–152. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, C.; Zeng, H.; Guo, T. High-Performance Graphene-on-Silicon Nitride All-Optical Switch Based on a Mach–Zehnder Interferometer. J. Light. Technol. 2021, 39, 2099–2105. [Google Scholar] [CrossRef]
- Qiu, C.; Yang, Y.; Li, C.; Wang, Y.; Wu, K.; Chen, J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep. 2017, 7, 17046. [Google Scholar] [CrossRef]
- Smith, P.W.; Tomlinson, W.J. Bistable optical devices promise subpicosecond switching. IEEE Spectr. 1981, 18, 26–33. [Google Scholar] [CrossRef]
- Shirdel, M.; Mansouri-Birjandi, M.A. All-optical bistable switching, hard-limiter and wavelength-controlled power source. Front. Optoelectron. 2016, 9, 560–564. [Google Scholar] [CrossRef]
- Gibbs, H. Optical Bistability: Controlling Light with Light; Academic Press Inc.: Orlando, FL, USA, 1985. [Google Scholar]
- Almeida, V.R.; Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 2004, 29, 2387–2389. [Google Scholar] [CrossRef]
- Schena, E.; Tosi, D.; Saccomandi, P.; Lewis, E.; Kim, T. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview. Sensors 2016, 16, 1144. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, L.; Chen, X.; Bennion, I. Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80° tilted structures. Opt. Lett. 2006, 31, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Ferrera, M.; Razzari, L.; Duchesne, D.; Morandotti, R.; Yang, Z.; Liscidini, M.; Sipe, J.E.; Chu, S.; Little, B.E.; Moss, D.J. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photonics 2008, 2, 737–740. [Google Scholar] [CrossRef]
- Kues, M.; Reimer, C.; Roztocki, P.; Cortés, L.R.; Sciara, S.; Wetzel, B.; Zhang, Y.; Cino, A.; Chu, S.T.; Little, B.E.; et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 2017, 546, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Tan, M.; Corcoran, B.; Wu, J.; Boes, A.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Hicks, D.G.; Morandotti, R.; et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 2021, 589, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Zhang, Y.; Xu, X.; Chu, S.T.; Little, B.E.; Morandotti, R.; Jia, B.; et al. 2D Layered Graphene Oxide Films Integrated with Micro-Ring Resonators for Enhanced Nonlinear Optics. Small 2020, 16, 1906563. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, W.; Sun, X.; Tsang, H.K.; Shu, C. Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator. Opt. Lett. 2017, 42, 1950–1953. [Google Scholar] [CrossRef] [PubMed]
- Priem, G.; Dumon, P.; Bogaerts, W.; Thourhout, D.V.; Morthier, G.; Baets, R. Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures. Opt. Express 2005, 13, 9623–9628. [Google Scholar] [CrossRef] [PubMed]
- Razzari, L.; Duchesne, D.; Ferrera, M.; Morandotti, R.; Chu, S.; Little, B.E.; Moss, D.J. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics 2010, 4, 41–45. [Google Scholar] [CrossRef]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef]
- Arianfard, H.; Juodkazis, S.; Moss, D.J.; Wu, J. Sagnac interference in integrated photonics. Appl. Phys. Rev. 2023, 10, 011309. [Google Scholar] [CrossRef]
- Cocorullo, G.; Della Corte, F.G.; Rendina, I.; Sarro, P.M. Thermo-optic effect exploitation in silicon microstructures. Sens. Actuators A Phys. 1998, 71, 19–26. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, S.J.; Jeon, S.-W.; Ju, S.; Park, C.-S.; Han, W.-T.; Lee, B.H. Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe. Opt. Express 2012, 20, 23744–23754. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.R.; Selvaraja, S.K.; Varma, M. Real-time compensation of errors in refractive index shift measurements of microring sensors using thermo-optic coefficients. Opt. Express 2018, 26, 13461–13473. [Google Scholar] [CrossRef]
- Grieco, A.; Slutsky, B.; Tan, D.T.H.; Zamek, S.; Nezhad, M.P.; Fainman, Y. Optical Bistability in a Silicon Waveguide Distributed Bragg Reflector Fabry–Pérot Resonator. J. Light. Technol. 2012, 30, 2352–2355. [Google Scholar] [CrossRef]
- Rabus, D.G. Integrated Ring Resonators; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Gao, H.; Jiang, Y.; Cui, Y.; Zhang, L.; Jia, J.; Jiang, L. Investigation on the Thermo-Optic Coefficient of Silica Fiber Within a Wide Temperature Range. J. Light. Technol. 2018, 36, 5881–5886. [Google Scholar] [CrossRef]
- White, G.K. Thermal expansion of reference materials: Copper, silica and silicon. J. Phys. D Appl. Phys. 1973, 6, 2070. [Google Scholar] [CrossRef]
- Horvath, C.; Bachman, D.; Indoe, R.; Van, V. Photothermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator. Opt. Lett. 2013, 38, 5036–5039. [Google Scholar] [CrossRef]
- Foster, M.A.; Turner, A.C.; Sharping, J.E.; Schmidt, B.S.; Lipson, M.; Gaeta, A.L. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006, 441, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photonics 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Righini, R. Ultrafast Optical Kerr Effect in Liquids and Solids. Science 1993, 262, 1386–1390. [Google Scholar] [CrossRef]
- Dumais, P.; Goodwill, D.J.; Celo, D.; Jiang, J.; Zhang, C.; Zhao, F.; Tu, X.; Zhang, C.; Yan, S.; He, J.; et al. Silicon Photonic Switch Subsystem With 900 Monolithically Integrated Calibration Photodiodes and 64-Fiber Package. J. Light. Technol. 2018, 36, 233–238. [Google Scholar] [CrossRef]
- Coenen, D.; Oprins, H.; Ban, Y.; Ferraro, F.; Pantouvaki, M.; Van Campenhout, J.; De Wolf, I. Thermal Modelling of Silicon Photonic Ring Modulator with Substrate Undercut. J. Light. Technol. 2022, 40, 4357–4363. [Google Scholar] [CrossRef]
- Parra, J.; Hurtado, J.; Griol, A.; Sanchis, P. Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Opt. Express 2020, 28, 9393–9404. [Google Scholar] [CrossRef]
- Gupta, R.K.; Das, B.K. Performance analysis of metal-microheater integrated silicon waveguide phase-shifters. OSA Contin. 2018, 1, 703–714. [Google Scholar] [CrossRef]
- Atabaki, A.H.; Hosseini, E.S.; Eftekhar, A.A.; Yegnanarayanan, S.; Adibi, A. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 2010, 18, 18312–18323. [Google Scholar] [CrossRef]
- Ikeda, K.; Saperstein, R.E.; Alic, N.; Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 2008, 16, 12987–12994. [Google Scholar] [CrossRef]
- Gu, T.; Yu, M.; Kwong, D.-L.; Wong, C.W. Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators. Opt. Express 2014, 22, 18412–18420. [Google Scholar] [CrossRef]
- Luo, L.-W.; Wiederhecker, G.S.; Preston, K.; Lipson, M. Power insensitive silicon microring resonators. Opt. Lett. 2012, 37, 590–592. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Ma, Q.; Rossmann, T.; Guo, Z. Temperature sensitivity of silica micro-resonators. J. Phys. D Appl. Phys. 2008, 41, 245111. [Google Scholar] [CrossRef]
- Jin, L.; Di Lauro, L.; Pasquazi, A.; Peccianti, M.; Moss, D.J.; Morandotti, R.; Little, B.E.; Chu, S.T. Optical multi-stability in a nonlinear high-order microring resonator filter. APL Photonics 2020, 5, 056106. [Google Scholar] [CrossRef]
- Rukhlenko, I.D.; Premaratne, M.; Agrawal, G.P. Analytical study of optical bistability in silicon ring resonators. Opt. Lett. 2010, 35, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Petrone, N.; McMillan, J.F.; van der Zande, A.; Yu, M.; Lo, G.-Q.; Kwong, D.-L.; Hone, J.; Wong, C.W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 2012, 6, 554–559. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, L.; Yi, D.; Xu, J.-B.; Tsang, H.K. Enhanced thermo-optic nonlinearities in a MoS2-on-silicon microring resonator. Appl. Phys. Express 2020, 13, 022004. [Google Scholar] [CrossRef]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; Renteria, J.; Balandin, A.A. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 2014, 248, 37–43. [Google Scholar] [CrossRef]
- Renteria, J.D.; Nika, D.L.; Balandin, A.A. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage. Appl. Sci. 2014, 4, 525–547. [Google Scholar] [CrossRef]
- Shakouri, A. Nanoscale Thermal Transport and Microrefrigerators on a Chip. Proc. IEEE 2006, 94, 1613–1638. [Google Scholar] [CrossRef]
- Mehra, N.; Mu, L.; Ji, T.; Yang, X.; Kong, J.; Gu, J.; Zhu, J. Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today 2018, 12, 92–130. [Google Scholar] [CrossRef]
- Mahajan, S.S.; Subbarayan, G.; Sammakia, B.G. Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations. Phys. Rev. E 2007, 76, 056701. [Google Scholar] [CrossRef]
- Komma, J.; Schwarz, C.; Hofmann, G.; Heinert, D.; Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905. [Google Scholar] [CrossRef]
- Cocorullo, G.; Della Corte, F.G.; Rendina, I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 1999, 74, 3338–3340. [Google Scholar] [CrossRef]
- Hsu, W.-C.; Zhen, C.; Wang, A.X. Electrically Tunable High-Quality Factor Silicon Microring Resonator Gated by High Mobility Conductive Oxide. ACS Photonics 2021, 8, 1933–1936. [Google Scholar] [CrossRef]
- Barclay, P.E.; Srinivasan, K.; Painter, O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt. Express 2005, 13, 801–820. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Wang, Z.; Bauters, J.F.; Tien, M.C.; Heck, M.J.R.; Blumenthal, D.J.; Bowers, J.E. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express 2011, 19, 14130–14136. [Google Scholar] [CrossRef] [PubMed]
Parameter | Symbol | Value | Source | |
---|---|---|---|---|
Material parameters | Refractive index | n | silica: 1.45 doped silica: 1.60 | [25] |
Electrical conductivity (S/m) | σ | 6 × 10−3 | [17] | |
Waveguide parameters | Width (μm) | W | 3 | Device structural parameter |
Height (μm) | H | 2 | Device structural parameter | |
MRR parameters | Ring radius (µm) | R | 592.1 | Device structural parameter |
Field transmission coefficients | t1,2 (a) | TE: 0.9991 TM: 0.9992 | Fit results from Figure 1d | |
Round-trip amplitude transmission | a | TE: 0.9906 TM: 0.9875 | Fit results from Figure 1d | |
Intensity build-up factor | BUF | TE: 47.7 TM: 36.8 | Calculated based on the fitted t1,2 and a |
Parameter | Thermo-Optic Coefficient (°C−1) | Coefficient for Optically Induced Thermo-Optic Process (cm2/W) | Thermal Conductivity (W·m−1 °C−1) (c) | Refs. |
---|---|---|---|---|
Silicon | ~1.8 × 10−4 (~86 pm/°C) (a) | ~7.8 × 10−11 | ~149 | [33,57,58,59] |
Silicon nitride | ~2.6 × 10−5 (~11 pm/°C) (a) | ~1.5 × 10−15 | ~29 | [21,60,61] |
Silica | ~1.1 × 10−5 (~15 pm/°C) (a) | ~2.5 × 10−13 | ~1.4 | [31,33,46] |
High-index doped silica (b) | ~1.46 × 10−5 (~13.8 pm/°C) (a) | ~3.4 × 10−13 | ~0.32 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Wu, J.; Jin, D.; Chu, S.T.; Little, B.E.; Huang, D.; Morandotti, R.; Moss, D.J. Thermo-Optic Response and Optical Bistablility of Integrated High-Index Doped Silica Ring Resonators. Sensors 2023, 23, 9767. https://doi.org/10.3390/s23249767
Hu J, Wu J, Jin D, Chu ST, Little BE, Huang D, Morandotti R, Moss DJ. Thermo-Optic Response and Optical Bistablility of Integrated High-Index Doped Silica Ring Resonators. Sensors. 2023; 23(24):9767. https://doi.org/10.3390/s23249767
Chicago/Turabian StyleHu, Junkai, Jiayang Wu, Di Jin, Sai Tak Chu, Brent E. Little, Duan Huang, Roberto Morandotti, and David J. Moss. 2023. "Thermo-Optic Response and Optical Bistablility of Integrated High-Index Doped Silica Ring Resonators" Sensors 23, no. 24: 9767. https://doi.org/10.3390/s23249767