RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution
<p>Qualitative trade-off comparison between the performance and the latency of SR models (e.g., SwinIR [<a href="#B4-sensors-23-09575" class="html-bibr">4</a>], ESRT [<a href="#B9-sensors-23-09575" class="html-bibr">9</a>], ShuffleMixer [<a href="#B13-sensors-23-09575" class="html-bibr">13</a>], IDN [<a href="#B19-sensors-23-09575" class="html-bibr">19</a>], IMDN [<a href="#B20-sensors-23-09575" class="html-bibr">20</a>], LatticeNet [<a href="#B21-sensors-23-09575" class="html-bibr">21</a>], LapSRN [<a href="#B22-sensors-23-09575" class="html-bibr">22</a>]) on the Manga109 (<math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> </mrow> </semantics></math>) benchmark dataset. The color normalized mapping represents the model’s parameter number, and the circle’s area represents the Multiply-Accumulates (MACs) of a model. Our proposed models are marked in the red label and line. The comparison results show the superiority of our method.</p> "> Figure 2
<p>The architecture of the Efficient Residual ConvNet with structural Re-parameterization (RepECN).</p> "> Figure 3
<p>The comparison between Asymmetric Convolutional Block (ACB) and standard Convolution.</p> "> Figure 4
<p>Illustration of the proposed upsampling module.</p> "> Figure 5
<p>Visual qualitative comparison of the efficient state-of-the-art models (e.g., SwinIR-S [<a href="#B4-sensors-23-09575" class="html-bibr">4</a>], ESRT [<a href="#B9-sensors-23-09575" class="html-bibr">9</a>], LBNet [<a href="#B10-sensors-23-09575" class="html-bibr">10</a>], IMDN [<a href="#B20-sensors-23-09575" class="html-bibr">20</a>], LatticeNet [<a href="#B21-sensors-23-09575" class="html-bibr">21</a>], EDSR-baseline [<a href="#B24-sensors-23-09575" class="html-bibr">24</a>]) on Set14 [<a href="#B49-sensors-23-09575" class="html-bibr">49</a>] and Urban100 [<a href="#B51-sensors-23-09575" class="html-bibr">51</a>] benchmark datasets for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> single image super-resolution (SISR). Zoom in for the best view.</p> "> Figure 6
<p>Visual qualitative comparisons on a real-world historical image dataset for <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> </mrow> </semantics></math> SR. The proposed ALAN generates a cleaner view than other methods (e.g., LBNet [<a href="#B10-sensors-23-09575" class="html-bibr">10</a>], LatticeNet [<a href="#B21-sensors-23-09575" class="html-bibr">21</a>], EDSR [<a href="#B24-sensors-23-09575" class="html-bibr">24</a>], CARN [<a href="#B56-sensors-23-09575" class="html-bibr">56</a>]) with fewer artifacts.</p> "> Figure 7
<p>Ablation study on different number settings of the RepECN structure. The illustrations are tested on Set5 [<a href="#B46-sensors-23-09575" class="html-bibr">46</a>] for <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>×</mo> </mrow> </semantics></math> SISR.</p> ">
Abstract
:1. Introduction
- We propose an efficient and high-accuracy SR model RepECN to offer fast speed and high-quality image reconstruction capabilities using the Transformer-like stage-to-block design paradigm.
- To further improve performance, we employ a large kernel Conv module inspired by ConvNeXt and an Asymmetric Re-Parameterization technique, which is proven to perform better than other symmetric square Re-Parameterization techniques.
- To save parameters and maintain reconstruction performance, we propose a novel image reconstruction module based on nearest-neighbor interpolation and pixel attention.
- Extensive experimental results show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance.
2. Related Work
2.1. CNN-Based Efficient SR
2.2. Transformer-Based Efficient SR
2.3. Large Kernel ConvNet
2.4. Structural Re-Parameterization
3. Methods
3.1. Network Architecture
3.1.1. Shallow and Deep Feature Extraction
3.1.2. Image Reconstruction
3.1.3. Loss Function
3.2. ConvNet Stages
3.2.1. Re-Parameterization ConvNet Blocks
3.2.2. Asymmetric Convolutional Block
3.3. Lightweight Upsampling Module
4. Experiments
4.1. Experimental Settings
4.1.1. Datasets and Indicators
4.1.2. Training Details
4.2. Experimental Results
Performance and Latency Comparison
4.3. Ablation Study and Analysis
4.3.1. Impact of Normalization in CNS and ACB
4.3.2. Impact of Structural Re-Parameterization
4.3.3. Impact of the Head Layer in CNS
4.3.4. Impact of Nearest-Neighbor Interpolation with Pixel Attention in Upsampling Module
4.3.5. Impact of CNS, RepCNB, and Channel Numbers
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-Trained Image Processing Transformer. In Proceedings of the Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12294–12305. [Google Scholar] [CrossRef]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings of the International Conference on Computer Vision Workshops, Montreal, QC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar] [CrossRef]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the European Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 63–79. [Google Scholar] [CrossRef]
- Dong, C.; Wen, W.; Xu, T.; Yang, X. Joint Optimization of Data-Center Selection and Video-Streaming Distribution for Crowdsourced Live Streaming in a Geo-Distributed Cloud Platform. IEEE Trans. Netw. Serv. Manag. 2019, 16, 729–742. [Google Scholar] [CrossRef]
- Morikawa, C.; Kobayashi, M.; Satoh, M.; Kuroda, Y.; Inomata, T.; Matsuo, H.; Miura, T.; Hilaga, M. Image and Video Processing on Mobile Devices: A Survey. Vis. Comput. 2021, 37, 2931–2949. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Li, J.; Liu, H.; Huang, C.; Zhang, L.; Zeng, T. Transformer for Single Image Super-Resolution. In Proceedings of the Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 457–466. [Google Scholar]
- Gao, G.; Wang, Z.; Li, J.; Li, W.; Yu, Y.; Zeng, T. Lightweight Bimodal Network for Single-Image Super-Resolution via Symmetric CNN and Recursive Transformer. In Proceedings of the International Joint Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2022; Volume 2, pp. 913–919. [Google Scholar] [CrossRef]
- Song, D.; Xu, C.; Jia, X.; Chen, Y.; Xu, C.; Wang, Y. Efficient Residual Dense Block Search for Image Super-Resolution. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12007–12014. [Google Scholar] [CrossRef]
- Wang, B.; Yan, B.; Liu, C.; Hwangbo, R.; Jeon, G.; Yang, X. Lightweight Bidirectional Feedback Network for Image Super-Resolution. Comput. Electr. Eng. 2022, 102, 108254. [Google Scholar] [CrossRef]
- Sun, L.; Pan, J.; Tang, J. ShuffleMixer: An Efficient ConvNet for Image Super-Resolution. In Proceedings of the NeurIPS, Virtual, 12–16 December 2022; Volume 35, pp. 17314–17326. [Google Scholar]
- Jo, Y.; Joo Kim, S. Practical Single-Image Super-Resolution Using Look-Up Table. In Proceedings of the Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; 2021; pp. 691–700. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, J.; Zhou, J.; Lu, J. Learning Series-Parallel Lookup Tables for Efficient Image Super-Resolution. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 305–321. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, Y.; Zhao, P.; Li, Y.; Zhan, Z.; Niu, W.; Tang, H.; Qin, M.; Ren, B.; Wang, Y. Compiler-Aware Neural Architecture Search for On-Mobile Real-time Super-Resolution. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 92–111. [Google Scholar] [CrossRef]
- Wang, X.; Dong, C.; Shan, Y. RepSR: Training Efficient VGG-style Super-Resolution Networks with Structural Re-Parameterization and Batch Normalization. In Proceedings of the ACM International Conference on Multimedia, Lisboa, Portugal, 10 October 2022; pp. 2556–2564. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Hui, Z.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 723–731. [Google Scholar] [CrossRef]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight Image Super-Resolution with Information Multi-distillation Network. In Proceedings of the ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar] [CrossRef]
- Luo, X.; Xie, Y.; Zhang, Y.; Qu, Y.; Li, C.; Fu, Y. LatticeNet: Towards Lightweight Image Super-Resolution with Lattice Block. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 272–289. [Google Scholar] [CrossRef]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 294–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2480–2495. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Wang, Y.; Wang, J.; Liu, W.; Zhang, Y. Single Image Super-Resolution via Multi-Scale Information Polymerization Network. IEEE Signal Process. Lett. 2021, 28, 1305–1309. [Google Scholar] [CrossRef]
- Ignatov, A.; Timofte, R.; Denna, M.; Younes, A.; Lek, A.; Ayazoglu, M.; Liu, J.; Du, Z.; Guo, J.; Zhou, X.; et al. Real-Time Quantized Image Super-Resolution on Mobile NPUs, Mobile AI 2021 Challenge: Report. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19–25 June 2021; pp. 2525–2534. [Google Scholar] [CrossRef]
- Ayazoglu, M. Extremely Lightweight Quantization Robust Real-Time Single-Image Super Resolution for Mobile Devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19–25 June 2021; pp. 2472–2479. [Google Scholar] [CrossRef]
- Du, Z.; Liu, J.; Tang, J.; Wu, G. Anchor-Based Plain Net for Mobile Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Virtual, 19–25 June 2021; pp. 2494–2502. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Chen, H.; Gu, J.; Zhang, Z. Attention in Attention Network for Image Super-Resolution. arXiv 2021, arXiv:2104.09497. [Google Scholar]
- Wu, Z.; Li, J.; Huang, D. Separable Modulation Network for Efficient Image Super-Resolution. In Proceedings of the ACM International Conference on Multimedia, Vancouver, BC, Canada, 7–10 June 2023; pp. 8086–8094. [Google Scholar] [CrossRef]
- Trockman, A.; Kolter, J.Z. Patches Are All You Need? In Proceedings of the International Conference on Learning Representations, Virtual, 25 April 2022. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11966–11976. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Scaling Up Your Kernels to 31×31: Revisiting Large Kernel Design in CNNs. In Proceedings of the Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11953–11965. [Google Scholar] [CrossRef]
- Feng, H.; Wang, L.; Li, Y.; Du, A. LKASR: Large Kernel Attention for Lightweight Image Super-Resolution. Knowl.-Based Syst. 2022, 252, 109376. [Google Scholar] [CrossRef]
- Ding, X.; Guo, Y.; Ding, G.; Han, J. ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1911–1920. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse Branch Block: Building a Convolution as an Inception-like Unit. In Proceedings of the Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10881–10890. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style ConvNets Great Again. In Proceedings of the Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13728–13737. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Shen, Y.; Zheng, W.; Huang, F.; Wu, J.; Chen, L. Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution. Sensors 2023, 23, 3963. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Kong, X.; He, J.; Qiao, Y.; Dong, C. Efficient Image Super-Resolution Using Pixel Attention. In Proceedings of the European Conference on Computer Vision Workshops, Glasgow, UK, 23–28 August 2020; pp. 56–72. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1122–1131. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Morel, M.l.A. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding. In Proceedings of the British Machine Vision Conference, Surrey, UK, 3–7 September 2012; pp. 135.1–135.10. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Mean Squared Error: Love It or Leave It? A New Look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the IEEE International Conference on Computer Vision, Kauai, HI, USA, 8–14 December 2001; Volume 2, pp. 416–423. [Google Scholar] [CrossRef]
- Huang, J.B.; Singh, A.; Ahuja, N. Single Image Super-Resolution from Transformed Self-Exemplars. In Proceedings of the Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar] [CrossRef]
- Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-Based Manga Retrieval Using Manga109 Dataset. Multimed. Tools Appl. 2017, 76, 21811–21838. [Google Scholar] [CrossRef]
- Timofte, R.; Agustsson, E.; Gool, L.V.; Yang, M.H.; Zhang, L. NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1110–1121. [Google Scholar] [CrossRef]
- Tai, Y.; Yang, J.; Liu, X. Image Super-Resolution via Deep Recursive Residual Network. In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2790–2798. [Google Scholar] [CrossRef]
- Li, W.; Zhou, K.; Qi, L.; Jiang, N.; Lu, J.; Jia, J. LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single Image Super-resolution and Beyond. In Proceedings of the NeurIPS, Virtual, 6–12 December 2020; Volume 33, pp. 20343–20355. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 256–272. [Google Scholar] [CrossRef]
Model | CNS | RepCNB | Channel | Patch | Epoch |
---|---|---|---|---|---|
RepECN-T | 2 | 6 | 24 | 3000 | |
RepECN-S | 3 | 6 | 42 | 2000 | |
RepECN | 5 | 6 | 60 | 1500 |
#Latency | Set5 | Set14 | BSD100 | Urban100 | Manga109 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Scale | #Params | #MACs | GPU(ms) | CPU(s) | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM |
LBNet-T | ×2 | 407K | 22.0 G | - | 241.29 | 37.95 | 0.9602 | 33.53 | 0.9168 | 32.07 | 0.8983 | 31.91 | 0.9253 | 38.59 | 0.9768 |
ESRT | ×2 | 677K | 161.8 G | - | 55.00 | 38.03 | 0.9600 | 33.75 | 0.9184 | 32.25 | 0.9001 | 32.58 | 0.9318 | 39.12 | 0.9774 |
LBNet | ×2 | 731K | 153.2 G | - | 314.27 | 38.05 | 0.9607 | 33.65 | 0.9177 | 32.16 | 0.8994 | 32.30 | 0.9291 | 38.88 | 0.9775 |
RepECN-S (Ours) | ×2 | 411K | 117.5 G | 145.2 | 2.96 | 38.10 | 0.9607 | 33.68 | 0.9187 | 32.24 | 0.9004 | 32.30 | 0.9301 | 38.76 | 0.9773 |
SwinIR-S | ×2 | 878K | 195.6 G | 1074.3 | 13.61 | 38.14 | 0.9611 | 33.86 | 0.9206 | 32.31 | 0.9012 | 32.76 | 0.9340 | 39.12 | 0.9783 |
RepECN (Ours) | ×2 | 1262K | 336.5 G | 242.6 | 6.66 | 38.20 | 0.9612 | 33.85 | 0.9199 | 32.32 | 0.9013 | 32.68 | 0.9337 | 39.11 | 0.9777 |
LBNet-T | ×3 | 407K | 22.0 G | 1551.5 | 49.80 | 34.33 | 0.9264 | 30.25 | 0.8402 | 29.05 | 0.8042 | 28.06 | 0.8485 | 33.48 | 0.9433 |
ESRT | ×3 | 770K | 82.1 G | 372.0 | 12.62 | 34.42 | 0.9268 | 30.43 | 0.8433 | 29.15 | 0.8063 | 28.46 | 0.8574 | 33.95 | 0.9455 |
LBNet | ×3 | 736K | 68.4 G | 2099.6 | 65.25 | 34.47 | 0.9277 | 30.38 | 0.8417 | 29.13 | 0.8061 | 28.42 | 0.8559 | 33.82 | 0.9460 |
RepECN-S (Ours) | ×3 | 411K | 69.9 G | 70.3 | 1.38 | 34.47 | 0.9277 | 30.41 | 0.8439 | 29.15 | 0.8064 | 28.30 | 0.8551 | 33.72 | 0.9456 |
SwinIR-S | ×3 | 886K | 87.2 G | 323.8 | 5.10 | 34.62 | 0.9289 | 30.54 | 0.8463 | 29.20 | 0.8082 | 28.66 | 0.8624 | 33.98 | 0.9478 |
RepECN (Ours) | ×3 | 1262K | 185.1 G | 111.4 | 2.82 | 34.67 | 0.9291 | 30.48 | 0.8459 | 29.25 | 0.8089 | 28.65 | 0.8628 | 34.09 | 0.9482 |
LBNet-T | ×4 | 410 K | 12.6 G | 567.5 | 18.29 | 32.08 | 0.8933 | 28.54 | 0.7802 | 27.54 | 0.7358 | 26.00 | 0.7819 | 30.37 | 0.9059 |
ESRT | ×4 | 751K | 58.6 G | 135.7 | 4.92 | 32.19 | 0.8947 | 28.69 | 0.7833 | 27.69 | 0.7379 | 26.39 | 0.7962 | 30.75 | 0.9100 |
LBNet | ×4 | 742K | 38.9 G | 714.6 | 21.83 | 32.29 | 0.8960 | 28.68 | 0.7832 | 27.62 | 0.7382 | 26.27 | 0.7906 | 30.76 | 0.9111 |
RepECN-S (Ours) | ×4 | 427K | 57 G | 45.7 | 1.03 | 32.32 | 0.8964 | 28.69 | 0.7833 | 27.62 | 0.7375 | 26.19 | 0.7889 | 30.54 | 0.9099 |
SwinIR-S | ×4 | 897K | 49.6 G | 176.1 | 2.97 | 32.44 | 0.8976 | 28.77 | 0.7858 | 27.69 | 0.7406 | 26.47 | 0.7980 | 30.92 | 0.9151 |
RepECN (Ours) | ×4 | 1295K | 140 G | 72.0 | 1.98 | 32.48 | 0.8985 | 28.76 | 0.7856 | 27.67 | 0.7395 | 26.45 | 0.7971 | 30.92 | 0.9139 |
Set5 | Set14 | BSD100 | Urban100 | Manga109 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods | Scale | Dataset | #Params | #MACs | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM |
Bicubic | ×2 | - | - | - | 33.66 | 0.9299 | 30.24 | 0.8688 | 29.56 | 0.8431 | 26.88 | 0.8403 | 30.80 | 0.9339 |
SRCNN | ×2 | T91 | 69K | 63.7G | 36.66 | 0.9542 | 32.45 | 0.9067 | 31.36 | 0.8879 | 29.50 | 0.8946 | 35.60 | 0.9663 |
FSRCNN | ×2 | T91 | 25K | 15.1G | 37.00 | 0.9558 | 32.63 | 0.9088 | 31.53 | 0.8920 | 29.88 | 0.9020 | 36.67 | 0.9710 |
ShuffleMixer-Tiny | ×2 | DIV2K+Flickr2K | 108K | 25G | 37.85 | 0.9600 | 33.33 | 0.9153 | 31.99 | 0.8972 | 31.22 | 0.9183 | 38.25 | 0.9761 |
RepECN-T (Ours) | ×2 | DIV2K | 104K | 31.6G | 37.90 | 0.9601 | 33.41 | 0.9164 | 32.09 | 0.8984 | 31.67 | 0.9239 | 38.30 | 0.9763 |
LapSRN | ×2 | DIV2K | 435K | 146.0G | 37.52 | 0.9591 | 32.99 | 0.9124 | 31.80 | 0.8952 | 30.41 | 0.9103 | 37.27 | 0.9740 |
DRRN | ×2 | DIV2K | 298K | 6.8T | 37.74 | 0.9591 | 33.23 | 0.9136 | 32.05 | 0.8973 | 31.23 | 0.9188 | 37.88 | 0.9749 |
IDN | ×2 | DIV2K | 553K | 174.1G | 37.83 | 0.9600 | 33.30 | 0.9148 | 32.08 | 0.8985 | 31.27 | 0.9196 | 38.01 | 0.9749 |
EDSR-baseline | ×2 | DIV2K | 1370K | 316.2G | 37.99 | 0.9604 | 33.57 | 0.9175 | 32.16 | 0.8994 | 31.98 | 0.9272 | 38.54 | 0.9769 |
IMDN | ×2 | DIV2K | 694K | 158.8G | 38.00 | 0.9605 | 33.63 | 0.9177 | 32.19 | 0.8996 | 32.17 | 0.9283 | 38.88 | 0.9774 |
LAPAR-A | ×2 | DIV2K+Flickr2K | 548K | 171.0G | 38.01 | 0.9605 | 33.62 | 0.9183 | 32.19 | 0.8999 | 32.10 | 0.9283 | 38.67 | 0.9772 |
ShuffleMixer | ×2 | DIV2K+Flickr2K | 394K | 91G | 38.01 | 0.9606 | 33.63 | 0.9180 | 32.17 | 0.8995 | 31.89 | 0.9257 | 38.83 | 0.9774 |
LatticeNet | ×2 | DIV2K | 756K | 169.5G | 38.06 | 0.9607 | 33.70 | 0.9187 | 32.19 | 0.8999 | 32.24 | 0.9288 | 38.93 | 0.9774 |
RepECN-S (Ours) | ×2 | DIV2K | 411K | 117.5G | 38.10 | 0.9607 | 33.68 | 0.9187 | 32.24 | 0.9004 | 32.30 | 0.9301 | 38.76 | 0.9773 |
RepECN (Ours) | ×2 | DIV2K | 1262K | 336.5G | 38.20 | 0.9612 | 33.85 | 0.9199 | 32.32 | 0.9013 | 32.68 | 0.9337 | 39.11 | 0.9777 |
Bicubic | ×3 | - | - | - | 30.39 | 0.8682 | 27.55 | 0.7742 | 27.21 | 0.7385 | 24.46 | 0.7349 | 26.95 | 0.8556 |
SRCNN | ×3 | T91 | 69K | 63.7G | 32.75 | 0.9090 | 29.30 | 0.8215 | 28.41 | 0.7863 | 26.24 | 0.7989 | 30.48 | 0.9117 |
FSRCNN | ×3 | T91 | 25K | 13.6G | 33.18 | 0.9140 | 29.37 | 0.8240 | 28.53 | 0.7910 | 26.43 | 0.8080 | 31.10 | 0.9210 |
ShuffleMixer-Tiny | ×3 | DIV2K+Flickr2K | 114K | 12G | 34.07 | 0.9250 | 30.14 | 0.8382 | 28.94 | 0.8009 | 27.54 | 0.8373 | 33.03 | 0.9400 |
RepECN-T (Ours) | ×3 | DIV2K | 104K | 19.9G | 34.20 | 0.9259 | 30.25 | 0.8405 | 29.03 | 0.8031 | 27.86 | 0.8453 | 33.13 | 0.9419 |
LapSRN | ×3 | DIV2K | 435K | 98.6G | 33.81 | 0.9220 | 29.79 | 0.8325 | 28.82 | 0.7980 | 27.07 | 0.8275 | 32.21 | 0.9350 |
DRRN | ×3 | DIV2K | 298K | 6.8T | 34.03 | 0.9244 | 29.96 | 0.8349 | 28.95 | 0.8004 | 27.53 | 0.8378 | 32.71 | 0.9379 |
IDN | ×3 | DIV2K | 553K | 105.6G | 34.11 | 0.9253 | 29.99 | 0.8354 | 28.95 | 0.8013 | 27.42 | 0.8359 | 32.71 | 0.9381 |
EDSR-baseline | ×3 | DIV2K | 1555K | 160.1G | 34.37 | 0.9270 | 30.28 | 0.8417 | 29.09 | 0.8052 | 28.15 | 0.8527 | 33.45 | 0.9439 |
IMDN | ×3 | DIV2K | 703K | 71.5G | 34.36 | 0.9270 | 30.32 | 0.8417 | 29.09 | 0.8046 | 28.17 | 0.8519 | 33.61 | 0.9445 |
LAPAR-A | ×3 | DIV2K+Flickr2K | 544K | 114.0G | 34.36 | 0.9267 | 30.34 | 0.8421 | 29.11 | 0.8054 | 28.15 | 0.8523 | 33.51 | 0.9441 |
ShuffleMixer | ×3 | DIV2K+Flickr2K | 415K | 43G | 34.40 | 0.9272 | 30.37 | 0.8423 | 29.12 | 0.8051 | 28.08 | 0.8498 | 33.69 | 0.9448 |
LatticeNet | ×3 | DIV2K | 765K | 76.3G | 34.40 | 0.9272 | 30.32 | 0.8416 | 29.09 | 0.8047 | 28.19 | 0.8511 | 33.63 | 0.9442 |
RepECN-S (Ours) | ×3 | DIV2K | 411K | 69.9G | 34.47 | 0.9277 | 30.41 | 0.8439 | 29.15 | 0.8064 | 28.30 | 0.8551 | 33.72 | 0.9456 |
RepECN (Ours) | ×3 | DIV2K | 1262K | 185.1G | 34.67 | 0.9291 | 30.48 | 0.8459 | 29.25 | 0.8089 | 28.65 | 0.8628 | 34.09 | 0.9482 |
Bicubic | ×4 | - | - | - | 28.42 | 0.8104 | 26.00 | 0.7027 | 25.96 | 0.6675 | 23.14 | 0.6577 | 24.89 | 0.7866 |
SRCNN | ×4 | T91 | 69K | 63.7G | 30.48 | 0.8628 | 27.50 | 0.7513 | 26.90 | 0.7101 | 24.52 | 0.7221 | 27.58 | 0.8555 |
FSRCNN | ×4 | T91 | 25K | 13.6G | 30.72 | 0.8660 | 27.61 | 0.7550 | 26.98 | 0.7150 | 24.62 | 0.7280 | 27.90 | 0.8610 |
ShuffleMixer-Tiny | ×4 | DIV2K+Flickr2K | 113K | 8G | 31.88 | 0.8912 | 28.46 | 0.7779 | 27.45 | 0.7313 | 25.66 | 0.7690 | 29.96 | 0.9006 |
RepECN-T (Ours) | ×4 | DIV2K | 110K | 17.1G | 32.05 | 0.8930 | 28.52 | 0.7791 | 27.52 | 0.7335 | 25.84 | 0.7772 | 30.09 | 0.9038 |
LapSRN | ×4 | DIV2K | 870K | 182.4G | 31.54 | 0.8852 | 28.09 | 0.7700 | 27.32 | 0.7275 | 25.21 | 0.7562 | 29.09 | 0.8900 |
DRRN | ×4 | DIV2K | 298K | 6.8T | 31.68 | 0.8888 | 28.21 | 0.7720 | 27.38 | 0.7284 | 25.44 | 0.7638 | 29.45 | 0.8946 |
IDN | ×4 | DIV2K | 553K | 81.9G | 31.82 | 0.8903 | 28.25 | 0.7730 | 27.41 | 0.7297 | 25.41 | 0.7632 | 29.41 | 0.8942 |
EDSR-baseline | ×4 | DIV2K | 1518K | 114.2G | 32.09 | 0.8938 | 28.58 | 0.7813 | 27.57 | 0.7357 | 26.04 | 0.7849 | 30.35 | 0.9067 |
IMDN | ×4 | DIV2K | 715K | 40.9G | 32.21 | 0.8948 | 28.58 | 0.7811 | 27.56 | 0.7353 | 26.04 | 0.7838 | 30.45 | 0.9075 |
LAPAR-A | ×4 | DIV2K+Flickr2K | 659K | 94.0G | 32.15 | 0.8944 | 28.61 | 0.7818 | 27.61 | 0.7366 | 26.14 | 0.7871 | 30.42 | 0.9074 |
ShuffleMixer | ×4 | DIV2K+Flickr2K | 411K | 28G | 32.21 | 0.8953 | 28.66 | 0.7827 | 27.61 | 0.7366 | 26.08 | 0.7835 | 30.65 | 0.9093 |
LatticeNet | ×4 | DIV2K | 777K | 43.6G | 32.18 | 0.8943 | 28.61 | 0.7812 | 27.56 | 0.7353 | 26.13 | 0.7843 | 30.54 | 0.9075 |
RepECN-S (Ours) | ×4 | DIV2K | 427K | 57G | 32.32 | 0.8964 | 28.69 | 0.7833 | 27.62 | 0.7375 | 26.19 | 0.7889 | 30.54 | 0.9099 |
RepECN (Ours) | ×4 | DIV2K | 1295K | 140G | 32.48 | 0.8985 | 28.76 | 0.7856 | 27.67 | 0.7395 | 26.45 | 0.7971 | 30.92 | 0.9139 |
Design Name | LayerNorm | BN in ACB | Head in CNS | Upsampling | Params | PSNR |
---|---|---|---|---|---|---|
RepECN-T-A | ✗ | ✗ | ✗ | Nearest (PA) | 75K | 37.78 |
RepECN-T-B | After Connect | 75K | 37.80 | |||
RepECN-T-C | Before Connect | ✗ | 75K | 37.81 | ||
RepECN-T-D | Before Connect | ✓ | ✗ | 75K | 37.82 | |
RepECN-T-E | ✓ | Three ACB | 99K | 37.84 | ||
RepECN-T | One ACB | Nearest (PA) | 104K | 37.86 | ||
RepECN-T-F | One ACB | Nearest (no PA) | 103K | 37.84 | ||
RepECN-T-G | Pixel Shuffle | 114K | 37.83 |
Design Name | Upsampling | Re-Parameterization | PSNR |
---|---|---|---|
FSRCNN | Deconvolution | ✗ | 37.00 |
FSRCNN-N | Nearest (PA) | ✗ | 37.31 |
FSRCNN-N-DBB | Nearest (PA) | DBB | 37.47 |
FSRCNN-N-ACB | Nearest (PA) | ACB | 37.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Qin, J.; Wen, W. RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution. Sensors 2023, 23, 9575. https://doi.org/10.3390/s23239575
Chen Q, Qin J, Wen W. RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution. Sensors. 2023; 23(23):9575. https://doi.org/10.3390/s23239575
Chicago/Turabian StyleChen, Qiangpu, Jinghui Qin, and Wushao Wen. 2023. "RepECN: Making ConvNets Better Again for Efficient Image Super-Resolution" Sensors 23, no. 23: 9575. https://doi.org/10.3390/s23239575