Comparing Inertial Measurement Units to Markerless Video Analysis for Movement Symmetry in Quarter Horses
<p>Scatter plots and regression-based corrected proportional limits of agreement (proportional bias: black/red line; lower and upper limits of agreement: green lines, see <a href="#sensors-23-08414-t004" class="html-table">Table 4</a> for equations, [<a href="#B21-sensors-23-08414" class="html-bibr">21</a>]) between IMU- and video-based measurements for three movement symmetry measures (MxDnorm, MnDnorm and UpDnorm) for poll and pelvis for N = 22 Quarter horses trotting <b>in-hand</b>. <b>Red line</b>: slope confidence interval does not include zero. (<b>a</b>) Poll MxD<sub>norm</sub>, (<b>b</b>) pelvis MxD<sub>norm</sub>, (<b>c</b>) poll MnD<sub>norm</sub>, (<b>d</b>) pelvis MnD<sub>norm</sub>, (<b>e</b>) poll UpD<sub>norm</sub>, (<b>f</b>) pelvis UpD<sub>norm</sub>. All values in % of range of motion.</p> "> Figure 1 Cont.
<p>Scatter plots and regression-based corrected proportional limits of agreement (proportional bias: black/red line; lower and upper limits of agreement: green lines, see <a href="#sensors-23-08414-t004" class="html-table">Table 4</a> for equations, [<a href="#B21-sensors-23-08414" class="html-bibr">21</a>]) between IMU- and video-based measurements for three movement symmetry measures (MxDnorm, MnDnorm and UpDnorm) for poll and pelvis for N = 22 Quarter horses trotting <b>in-hand</b>. <b>Red line</b>: slope confidence interval does not include zero. (<b>a</b>) Poll MxD<sub>norm</sub>, (<b>b</b>) pelvis MxD<sub>norm</sub>, (<b>c</b>) poll MnD<sub>norm</sub>, (<b>d</b>) pelvis MnD<sub>norm</sub>, (<b>e</b>) poll UpD<sub>norm</sub>, (<b>f</b>) pelvis UpD<sub>norm</sub>. All values in % of range of motion.</p> "> Figure 2
<p>Scatter plots and regression-based corrected proportional limits of agreement (bias: black/red line; lower and upper limits of agreement: green lines; see <a href="#sensors-23-08414-t005" class="html-table">Table 5</a> for equations) between IMU- and video-based measurements for three movement symmetry measures (MxDnorm, MnDnorm and UpDnorm) for poll and pelvis for N = 22 Quarter horses trotting on the lunge (left and right rein). <b>Red line</b>: slope confidence interval does not include zero. (<b>a</b>) Poll MxD<sub>norm</sub>, (<b>b</b>) pelvis MxD<sub>norm</sub>, (<b>c</b>) poll MnD<sub>norm</sub>, (<b>d</b>) pelvis MnD<sub>norm</sub>, (<b>e</b>) poll UpD<sub>norm</sub>, (<b>f</b>) pelvis UpD<sub>norm</sub>. All values in % of range of motion.</p> "> Figure 2 Cont.
<p>Scatter plots and regression-based corrected proportional limits of agreement (bias: black/red line; lower and upper limits of agreement: green lines; see <a href="#sensors-23-08414-t005" class="html-table">Table 5</a> for equations) between IMU- and video-based measurements for three movement symmetry measures (MxDnorm, MnDnorm and UpDnorm) for poll and pelvis for N = 22 Quarter horses trotting on the lunge (left and right rein). <b>Red line</b>: slope confidence interval does not include zero. (<b>a</b>) Poll MxD<sub>norm</sub>, (<b>b</b>) pelvis MxD<sub>norm</sub>, (<b>c</b>) poll MnD<sub>norm</sub>, (<b>d</b>) pelvis MnD<sub>norm</sub>, (<b>e</b>) poll UpD<sub>norm</sub>, (<b>f</b>) pelvis UpD<sub>norm</sub>. All values in % of range of motion.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Instrumentation and Setup
2.3. Exercise and Data Collection
2.4. Movement Symmetry Parameters
2.5. Asymmetry Direction and Data Normalization
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchner, H.H.; Savelberg, H.H.; Schamhardt, H.C.; Barneveld, A. Head and Trunk Movement Adaptations in Horses with Experimentally Induced Fore- or Hindlimb Lameness. Equine Vet. J. 1996, 28, 71–76. [Google Scholar] [CrossRef] [PubMed]
- May, S.A.; Wyn-Jones, G. Identification of Hindleg Lameness. Equine Vet. J. 1987, 19, 185–188. [Google Scholar] [CrossRef]
- Pfau, T.; Witte, T.H.; Wilson, A.M. A Method for Deriving Displacement Data during Cyclical Movement Using an Inertial Sensor. J. Exp. Biol. 2005, 208, 2503–2514. [Google Scholar] [CrossRef]
- Warner, S.M.; Koch, T.O.; Pfau, T. Inertial Sensors for Assessment of Back Movement in Horses during Locomotion over Ground. Equine Vet. J. 2010, 42 (Suppl. 3), 417–424. [Google Scholar] [CrossRef]
- Reed, S.K.; Kramer, J.; Thombs, L.; Pitts, J.B.; Wilson, D.A.; Keegan, K.G. Comparison of Results for Body-Mounted Inertial Sensor Assessment with Final Lameness Determination in 1224 Equids. J. Am. Vet. Med. Assoc. 2020, 256, 590–599. [Google Scholar] [CrossRef]
- Anwary, M.A.; Yu, H.; Vassallo, M. An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors. Sensors 2018, 18, 676. [Google Scholar] [CrossRef]
- Hardeman, A.M.; Serra Bragança, F.M.; Swagemakers, J.H.; Weeren, P.R.; Roepstorff, L. Variation in Gait Parameters Used for Objective Lameness Assessment in Sound Horses at the Trot on the Straight Line and the Lunge. Equine Vet. J. 2019, 51, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Lawin, F.J.; Byström, A.; Roepstorff, C.; Rhodin, M.; Almlöf, M.; Silva, M.; Andersen, P.H.; Kjellström, H.; Hernlund, E. Is Markerless More or Less? Comparing a Smartphone Computer Vision Method for Equine Lameness Assessment to Multi-Camera Motion Capture. Animals 2023, 13, 390. [Google Scholar] [CrossRef]
- Bosch, S.; Serra Bragança, F.; Marin-Perianu, M.; Marin-Perianu, R.; Van Der Zwaag, J.B.; Voskamp, J.; Back, W.; Van Weeren, R. EquiMoves: A Wireless Networked Inertial Measurement System for Objective Examination of Horse Gait. Sensors 2018, 18, 850. [Google Scholar] [CrossRef]
- Marunova, E.; Dod, L.; Witte, S.; Pfau, T. Smartphone-Based Pelvic Movement Asymmetry Measures for Clinical Decision Making in Equine Lameness Assessment. Animals 2021, 11, 1665. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, A.M.; Egenvall, A.; Serra Bragança, F.M.; Swagemakers, J.H.; Koene, M.H.W.; Roepstorff, L.; van Weeren, P.R.; Byström, A. Visual Lameness Assessment in Comparison to Quantitative Gait Analysis Data in Horses. Equine Vet. J. 2021, 54, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Macaire, C.; Hanne-Poujade, S.; De Azevedo, E.; Denoix, J.-M.; Coudry, V.; Jacquet, S.; Bertoni, L.; Tallaj, A.; Audigié, F.; Hatrisse, C.; et al. Investigation of Thresholds for Asymmetry Indices to Represent the Visual Assessment of Single Limb Lameness by Expert Veterinarians on Horses Trotting in a Straight Line. Animals 2022, 12, 3498. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Reilly, P. How Low Can We Go? Influence of Sample Rate on Equine Pelvic Displacement Calculated from Inertial Sensor Data. Equine Vet. J. 2020, 53, 1075–1081. [Google Scholar] [CrossRef]
- Keegan, K.G.; Pai, P.F.; Wilson, D.A.; Smith, B.K. Signal Decomposition Method of Evaluating Head Movement to Measure Induced Forelimb Lameness in Horses Trotting on a Treadmill. Equine Vet. J. 2001, 33, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Serra Bragança, F.M.; Roepstorff, C.; Rhodin, M.; Pfau, T.; van Weeren, P.R.; Roepstorff, L. Quantitative Lameness Assessment in the Horse Based on Upper Body Movement Symmetry: The Effect of Different Filtering Techniques on the Quantification of Motion Symmetry. Biomed. Signal Process. Control 2020, 57, 101674. [Google Scholar] [CrossRef]
- Keegan, K.G.; Yonezawa, Y.; Pai, P.F.; Wilson, D.A.; Kramer, J. Evaluation of a Sensor-Based System of Motion Analysis for Detection and Quantification of Forelimb and Hind Limb Lameness in Horses. Am. J. Vet. Res. 2004, 65, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Starke, S.D.; Witte, T.H.; May, S.A.; Pfau, T. Accuracy and Precision of Hind Limb Foot Contact Timings of Horses Determined Using a Pelvis-Mounted Inertial Measurement Unit. J. Biomech. 2012, 45, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Roepstorff, C.; Dittmann, M.T.; Arpagaus, S.; Serra Bragança, F.M.; Hardeman, A.; Persson-Sjödin, E.; Roepstorff, L.; Gmel, A.I.; Weishaupt, M.A. Reliable and Clinically Applicable Gait Event Classification Using Upper Body Motion in Walking and Trotting Horses. J. Biomech. 2021, 114, 110146. [Google Scholar] [CrossRef] [PubMed]
- Hatrisse, C.; Macaire, C.; Sapone, M.; Hebert, C.; Hanne-Poujade, S.; De Azevedo, E.; Marin, F.; Martin, P.; Chateau, H. Stance Phase Detection by Inertial Measurement Unit Placed on the Metacarpus of Horses Trotting on Hard and Soft Straight Lines and Circles. Sensors 2022, 22, 703. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Keegan, K.G.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Dent, E.V.; Kellerman, T.E.; Wilson, D.A.; Reed, S.K. Assessment of Repeatability of a Wireless Inertial Sensor-Based Lameness Evaluation System for Horses. Am. J. Vet. Res. 2011, 72, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda Caviedes, M.F.; Forbes, B.S.; Pfau, T. Repeatability of Gait Analysis Measurements in Thoroughbreds in Training. Equine Vet. J. 2018, 50, 513–518. [Google Scholar] [CrossRef]
- Goedhart, J.; Rishniw, M. BA-plotteR–A Web Tool for Generating Bland-Altman Plots and Constructing Limits of Agreement. Res. Vet. Sci. 2021, 137, 281–286. [Google Scholar] [CrossRef] [PubMed]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; LaCarrubba, A.; Rasch, M. Comparison of an Inertial Sensor System of Lameness Quantification with Subjective Lameness Evaluation. Equine Vet. J. 2012, 44, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Boultbee, H.; Davis, H.; Walker, A.; Rhodin, M. Agreement between Two Inertial Sensor Gait Analysis Systems for Lameness Examinations in Horses. Equine Vet. Educ. 2016, 28, 203–208. [Google Scholar] [CrossRef]
- Rhodin, M.; Serra Braganca, F.; Persson-Sjodin, E.; Roepstorff, L.; Weishaupt, M.; Egenvall, A.; Pfau, T. Lack of a Double-Peaked Vertical Head Movement in Moderately Lame Horses with Induced Lameness. In Proceedings of the Abstracts of the International Conference on Canine and Equine Locomotion 2016, London, UK, 17 August 2016; Equine Veterinary Journal. Volume 48, p. 37. [Google Scholar]
- Pfau, T.; Noordwijk, K.; Caviedes, M.F.S.; Persson-Sjodin, E.; Barstow, A.; Forbes, B.S.; Rhodin, M. Head, Withers and Pelvic Movement Asymmetry and Their Relative Timing in Trot in Racing Thoroughbreds in Training. Equine Vet. J. 2018, 50, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Jennings, C.; Mitchell, H.; Olsen, E.; Walker, A.; Egenvall, A.; Tröster, S.; Weller, R.; Rhodin, M. Lungeing on Hard and Soft Surfaces: Movement Symmetry of Trotting Horses Considered Sound by Their Owners. Equine Vet. J. 2016, 48, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, M.; Pfau, T.; Roepstorff, L.; Egenvall, A. Effect of Lungeing on Head and Pelvic Movement Asymmetry in Horses with Induced Lameness. Vet. J. 2013, 198, e39–e45. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, M.; Egenvall, A.; Andersen, P.H.; Pfau, T. Head and Pelvic Movement Asymmetries at Trot in Riding Horses in Training and Perceived as Free from Lameness by the Owner. PLoS ONE 2017, 12, e0176253. [Google Scholar] [CrossRef]
- Lauer, J.; Zhou, M.; Ye, S.; Menegas, W.; Nath, T.; Rahman, M.M.; Di Santo, V.; Soberanes, D.; Feng, G.; Murthy, V.N.; et al. Multi-Animal Pose Estimation and Tracking with DeepLabCut. Nat. Methods 2022, 19, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Zhang, Y.; Sinnott, R.O. Identifying Lameness in Horses through Deep Learning. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Gwangju, Republic of Korea, 22 March 2021; pp. 976–985. [Google Scholar]
IMU (EquiGait) | |||||||||||
In-hand | Lunge left | Lunge right | Hard | Soft | |||||||
avg | 18.68 | 29.57 | 26.65 | 17.2 | 25.61 | ||||||
SD | 6.87 | 6.16 | 4.72 | 5.32 | 7.38 | ||||||
Video (Sleip) | |||||||||||
Front | Hind | ||||||||||
In-hand | Lunge left | Lunge right | Hard | Soft | In-hand | Lunge left | Lunge right | Hard | Soft | ||
avg | 21.29 | 31.80 | 32.1 | 21.5 | 28.60 | 13.74 | 24.60 | 25.5 | 13.35 | 21.56 | |
SD | 5.39 | 11.16 | 7.66 | 4.97 | 9.81 | 5.28 | 8.52 | 7.42 | 4.60 | 9.05 |
Poll | ||||||||
MxD (%) | MnD (%) | UpD (%) | ROM (mm) | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Total | 1.25 | 20.42 | −0.48 | 22.00 | 1.20 | 36.04 | 62.48 | 11.73 |
In-hand | 1.43 | 17.07 | 1.21 | 19.80 | 0.40 | 29.25 | 59 | 10.16 |
Left | −10.45 | 20.52 | −12.60 | 21.09 | −21.40 | 33.65 | 65.5 | 12.87 |
Right | 12.60 | 19.97 | 13.09 | 19.31 | 25.39 | 35.39 | 66.41 | 11.38 |
Hard | 1.65 | 17.98 | 1.69 | 21.20 | 4.31 | 32.40 | 54.68 | 9.47 |
Soft | 1.12 | 21.17 | −1.20 | 22.20 | 0.16 | 37.11 | 65.07 | 11.25 |
Pelvis | ||||||||
MxD (%) | MnD (%) | UpD (%) | ROM (mm) | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Total | 2.18 | 12.60 | −3.37 | 13.51 | −1.54 | 19.34 | 74.70 | 12.31 |
In-hand | 2.76 | 12.62 | −3.06 | 12.03 | −1.04 | 21.44 | 68.77 | 10.27 |
Left | 8.24 | 9.47 | −12.47 | 8.93 | −4.23 | 12.99 | 80.45 | 12.46 |
Right | −5.05 | 11.74 | 5.09 | 14.37 | 0.14 | 19.95 | 80.82 | 9.96 |
Hard | 3.48 | 11.84 | −3.76 | 12.44 | 1.15 | 21.61 | 62.91 | 8.38 |
Soft | 1.75 | 12.82 | −3.25 | 13.84 | −2.44 | 13.44 | 78.64 | 10.81 |
Poll | ||||||
MxD (%) | MnD (%) | UpD (%) | ||||
Mean | SD | Mean | SD | Mean | SD | |
Total | −0.96 | 22.17 | −0.87 | 21.19 | −1.84 | 37.97 |
In-hand | −3.54 | 15.09 | −3.09 | 17.37 | −6.64 | 27.05 |
Left | −13.71 | 23.34 | −12.00 | 18.55 | −25.71 | 32.32 |
Right | 16.36 | 22.49 | 14.18 | 22.39 | 30.54 | 40.60 |
Hard | −4.73 | 14.30 | −1.45 | 19.95 | −6.18 | 29.48 |
Soft | 0.31 | 24.10 | −0.68 | 21.59 | −0.37 | 40.29 |
Pelvis | ||||||
MxD (%) | MnD (%) | UpD (%) | ||||
Mean | SD | Mean | SD | Mean | SD | |
Total | 0.64 | 10.38 | 1.02 | 8.59 | 1.66 | 14.33 |
In-hand | 1.10 | 9.69 | 0.99 | 7.56 | 2.09 | 15.35 |
Left | 6.43 | 8.35 | −3.69 | 7.33 | 2.74 | 9.98 |
Right | −5.79 | 10.09 | 5.57 | 9.26 | 0.23 | 15.66 |
Hard | 2.04 | 10.41 | 1.93 | 9.17 | 3.98 | 17.77 |
Soft | 0.16 | 10.33 | 0.70 | 8.37 | 0.86 | 12.88 |
Poll | MxDnorm | MnDnorm | UpDnorm |
constant bias | |||
const. bias | −4.98 [−7.9; −2.1] | −1.88 [−5.6; 1.0] | −7.04 [−12.1; −2.0] |
uLoA | 13.54 [8.6; 18.5] | 21.92 [15.5; 28.3] | 25.17 [16.5; 33.8] |
lLoA | −23.50 [−28.5; −18.5] | −25.69 [−32.1; −19.3] | −39.25 [−47.9; −30.6] |
LoA width | 37.04 | 47.61 | 64.42 |
proportional bias | |||
prop. Bias | y = −0.1338x − 5.1202 | y = −0.1456x − 2.198 | y = −0.0854x − 7.3073 |
slope conf. | [−0.32; 0.05] | [−0.35; 0.06] | [−0.27; 0.10] |
uLoA/lLoA | y = −0.1338x − 5.1202 ± 1.96 (−0.0406x + 7.3503) | y = −0.1456x − 2.198 ± 1.96 (0.1248x + 8.6149) | y = −0.0854x − 7.3073 ± 1.96 (−0.0495x + 12.805 |
pLoA width | 28.81 | 38.77 | 50.19 |
Pelvis | MxDnorm | MnDnorm | UpDnorm |
constant bias | |||
const. bias | NA | NA | NA |
uLoA | NA | NA | NA |
lLoA | NA | NA | NA |
LoA width | NA | NA | NA |
proportional bias | |||
prop. Bias | y = −0.2693x − 1.2735 | y = −0.3665x + 4.3923 | y = −0.3104x + 2.5489 |
slope conf. | [−0.39; −0.15] | [−0.58; −0.15] | [−0.46; −0.16] |
uLoA/lLoA | y = −0.2693x − 1.2735 ± 1.96 (−0.026x + 3.266) | y = −0.3665x + 4.3923 ± 1.96 (0.0532x + 4.465) | y = −0.3104x + 2.5489 ± 1.96 (0.0689x + 6.0484) |
pLoA width | 12.80 | 17.50 | 23.71 |
Poll | MxDnorm | MnDnorm | UpDnorm |
constant bias | |||
const. bias | NA | 0.52 [−2.12; 3.17] | NA |
uLoA | NA | 17.38 [12.86; 21.90] | NA |
lLoA | NA | −16.34 [−20.86; −11.81] | NA |
LoA width | NA | 33.72 | NA |
proportional bias | |||
prop. Bias | y = 0.1599x + 0.3037 | y = 0.024x + 0.5635 | y = 0.0977x + 0.5319 |
slope conf. | [0.04; 0.18] | [−0.04; 0.11] | [0.02; 0.15] |
lLoA/uLoA | y = 0.1599x + 0.3037 ± 1.96 (−0.0043x + 5.7197) | y = 0.024x + 0.5635 ± 1.96 (0.0717x + 6.7051) | y = 0.0977x + 0.5319 ± 1.96 (0.0352x + 9.6432) |
pLoA width | 22.42 | 26.28 | 37.80 |
Pelvis | MxDnorm | MnDnorm | UpDnorm |
constant bias | |||
const. bias | −0.86 [−2.29; 0.57] | NA | NA |
uLoA | 8.24 [5.80; 10.69] | NA | NA |
lLoA | −9.96 [−12.40; −7.52] | NA | NA |
LoA width | 18.20 | NA | NA |
proportional bias | |||
prop. Bias | y = −0.1061x − 0.9001 | y = −0.4487x + 3.9082 | y = −0.2653x + 3.3081 |
slope conf. | [−0.23; 0.01] | [−0.58; −0.32] | [−0.44; −0.09] |
lLoA/uLoA | y = −0.1061x − 0.9001 ± 1.96 (0.0016x + 3.6528) | y = −0.4487x + 3.9082 ± 1.96 (−0.0266x + 3.6142) | y = −0.2653x + 3.3081 ± 1.96 (0.0257x + 5.956) |
pLoA width | 14.32 | 14.17 | 23.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfau, T.; Landsbergen, K.; Davis, B.L.; Kenny, O.; Kernot, N.; Rochard, N.; Porte-Proust, M.; Sparks, H.; Takahashi, Y.; Toth, K.; et al. Comparing Inertial Measurement Units to Markerless Video Analysis for Movement Symmetry in Quarter Horses. Sensors 2023, 23, 8414. https://doi.org/10.3390/s23208414
Pfau T, Landsbergen K, Davis BL, Kenny O, Kernot N, Rochard N, Porte-Proust M, Sparks H, Takahashi Y, Toth K, et al. Comparing Inertial Measurement Units to Markerless Video Analysis for Movement Symmetry in Quarter Horses. Sensors. 2023; 23(20):8414. https://doi.org/10.3390/s23208414
Chicago/Turabian StylePfau, Thilo, Kiki Landsbergen, Brittany L. Davis, Olivia Kenny, Nicole Kernot, Nina Rochard, Marion Porte-Proust, Holly Sparks, Yuji Takahashi, Kasara Toth, and et al. 2023. "Comparing Inertial Measurement Units to Markerless Video Analysis for Movement Symmetry in Quarter Horses" Sensors 23, no. 20: 8414. https://doi.org/10.3390/s23208414