One Definition to Join Them All: The N-Spherical Solution for the EEG Lead Field
<p>Relative error for each definition of the constant when using the default conductivity values (0.3333 S/m for the brain and the scalp and 0.3333/80 = 0.0042 S/m for the skull). The different values correspond to comparisons between Lutkenhöner [<a href="#B4-sensors-23-08136" class="html-bibr">4</a>] and Yao (2000) [<a href="#B6-sensors-23-08136" class="html-bibr">6</a>], Yao (2001) [<a href="#B12-sensors-23-08136" class="html-bibr">12</a>], Yao (2003) [<a href="#B7-sensors-23-08136" class="html-bibr">7</a>], and Næss (2017) [<a href="#B9-sensors-23-08136" class="html-bibr">9</a>], Bruna (2023): this research.</p> "> Figure 2
<p>Relative error for each definition of the constant when using random conductivity values. The different values correspond to comparisons between Lutkenhöner [<a href="#B4-sensors-23-08136" class="html-bibr">4</a>] and Yao (2000) [<a href="#B6-sensors-23-08136" class="html-bibr">6</a>], Yao (2001) [<a href="#B12-sensors-23-08136" class="html-bibr">12</a>], Yao (2003) [<a href="#B7-sensors-23-08136" class="html-bibr">7</a>], and Næss (2017) [<a href="#B9-sensors-23-08136" class="html-bibr">9</a>], Bruna (2023): this research.</p> ">
Abstract
:1. Introduction
2. Mathematical Development
3. Evaluation of the Accuracy and Performance of the Proposed Implementation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. MATLAB Implementation of the Algorithm
- The concentric spheres are centered in the origin;
- The radii of the spheres are provided as a vector with the name R;
- The conductivities of the spheres are provided as a vector with the name S;
- The spherical harmonics are to be evaluated until the order L.
Appendix B. Potential Generated Using Dipoles with Arbitrary Orientation
References
- Frank, E. Electric Potential Produced by Two Point Current Sources in a Homogeneous Conducting Sphere. J. Appl. Phys. 1952, 23, 1225–1228. [Google Scholar] [CrossRef]
- Arthur, R.M.; Geselowitz, D.B. Effect of Inhomogeneities on the Apparent Location and Magnitude of a Cardiac Current Dipole Source. IEEE Trans. Biomed. Eng. 1970, BME-17, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Cuffin, B.N.; Cohen, D. Comparison of the Magnetoencephalogram and Electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 1979, 47, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Lütkenhöner, B. Möglichkeiten und Grenzen der Neuromagnetischen Quellenanalyse; LIT: Hamburg, Germany, 1992; ISBN 9783894735647. [Google Scholar]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef] [PubMed]
- Yao, D. High-Resolution EEG Mappings: A Spherical Harmonic Spectra Theory and Simulation Results. Clin. Neurophysiol. 2000, 111, 81–92. [Google Scholar] [CrossRef]
- Yao, D. High-Resolution EEG Mapping: An Equivalent Charge-Layer Approach. Phys. Med. Biol. 2003, 48, 1997–2011. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain; Oxford University Press: Oxford, UK, 2006; ISBN 9780195050387. [Google Scholar]
- Næss, S.; Chintaluri, C.; Ness, T.V.; Dale, A.M.; Einevoll, G.T.; Wójcik, D.K. Corrected Four-Sphere Head Model for EEG Signals. Front. Hum. Neurosci. 2017, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Amico, E.; Bodart, O.; Rosanova, M.; Gosseries, O.; Heine, L.; Van Mierlo, P.; Martial, C.; Massimini, M.; Marinazzo, D.; Laureys, S. Tracking Dynamic Interactions Between Structural and Functional Connectivity: A TMS/EEG-DMRI Study. Brain Connect. 2017, 7, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Sekihara, K.; Nagarajan, S.S. Hierarchical Multiscale Bayesian Algorithm for Robust MEG/EEG Source Reconstruction. Neuroimage 2018, 183, 698–715. [Google Scholar] [CrossRef] [PubMed]
- Yao, D. A Method to Standardize a Reference of Scalp EEG Recordings to a Point at Infinity. Physiol. Meas. 2001, 22, 693–711. [Google Scholar] [CrossRef] [PubMed]
- Wolters, C.H.; Anwander, A.; Berti, G.; Hartmann, U. Geometry-Adapted Hexahedral Meshes Improve Accuracy of Finite-Element-Method-Based EEG Source Analysis. IEEE Trans. Biomed. Eng. 2007, 54, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Vallaghé, S.; Papadopoulo, T.; Clerc, M. The Adjoint Method for General EEG and MEG Sensor-Based Lead Field Equations. Phys. Med. Biol. 2009, 54, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Lew, S.; Wolters, C.H.; Dierkes, T.; Röer, C.; MacLeod, R.S. Accuracy and Run-Time Comparison for Different Potential Approaches and Iterative Solvers in Finite Element Method Based EEG Source Analysis. Appl. Numer. Math. 2009, 59, 1970–1988. [Google Scholar] [CrossRef] [PubMed]
- Gramfort, A.; Papadopoulo, T.; Olivi, E.; Clerc, M. OpenMEEG: Opensource Software for Quasistatic Bioelectromagnetics. Biomed. Eng. Online 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Geselowitz, D.B. On Bioelectric Potentials in an Inhomogeneous Volume Conductor. Biophys. J. 1967, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meijs, J.W.H.; Weier, O.W.; Peters, M.J.; van Oosterom, A. On the Numerical Accuracy of the Boundary Element Method (EEG Application). IEEE Trans. Biomed. Eng. 1989, 36, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, M.S.; Sarvas, J. Realistic Conductivity Geometry Model of the Human Head for Interpretation of Neuromagnetic Data. IEEE Trans. Biomed. Eng. 1989, 36, 165–171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruña, R.; Fuggetta, G.; Pereda, E. One Definition to Join Them All: The N-Spherical Solution for the EEG Lead Field. Sensors 2023, 23, 8136. https://doi.org/10.3390/s23198136
Bruña R, Fuggetta G, Pereda E. One Definition to Join Them All: The N-Spherical Solution for the EEG Lead Field. Sensors. 2023; 23(19):8136. https://doi.org/10.3390/s23198136
Chicago/Turabian StyleBruña, Ricardo, Giorgio Fuggetta, and Ernesto Pereda. 2023. "One Definition to Join Them All: The N-Spherical Solution for the EEG Lead Field" Sensors 23, no. 19: 8136. https://doi.org/10.3390/s23198136
APA StyleBruña, R., Fuggetta, G., & Pereda, E. (2023). One Definition to Join Them All: The N-Spherical Solution for the EEG Lead Field. Sensors, 23(19), 8136. https://doi.org/10.3390/s23198136