Spectrum Evaluation in CR-Based Smart Healthcare Systems Using Optimizable Tree Machine Learning Approach
<p>Cognitive radio-based smart healthcare system.</p> "> Figure 2
<p>Advanced technologies as integral parts of smart healthcare system.</p> "> Figure 3
<p>Working mechanism of cognitive radio in the smart healthcare system.</p> "> Figure 4
<p>Spectrum sensing by using energy detection method.</p> "> Figure 5
<p>Proposed system flow diagram for both theoretical and simulated data sets.</p> "> Figure 6
<p>MCE plot of simulated data at different number of samples.</p> "> Figure 7
<p>MCE plot of theoretical data at different numbers of samples.</p> ">
Abstract
:1. Introduction
- Data set creation on simulated and theoretical values of and alarm.
- Tree-based algorithms (TBAs), including fine tree, coarse tree, ensemble boosted tree, medium tree, ensemble bagged tree, ensemble RUSBoosted tree, and optimizable tree classifiers, are used to classify given data in MATLAB.
- The evaluation of these classifiers’ performance measures is presented based on the training and testing accuracies. This evaluation is very helpful to obtain better results of spectrum sensing.
- Minimum classification error (MCE) of optimizable tree is also plotted and discussed for both simulated and theoretical data sets.
2. Related Work: Smart Healthcare Using Machine Learning and Cognitive Radio Technologies
3. System Model
4. Results and Discussion
4.1. Data Modeling
4.2. Results of Classifiers
4.3. Minimum Classification Error (MCE)
- Estimated minimum classification error: Each blue element corresponds to the subdivision error estimate combined with the optimization process when taking into account all the parameter value units. Estimation is primarily based on the high self-assurance of the current goal model of the divisions.
- Minimum error of classification: Each circle corresponds to a fixed-phase calculation error that is combined over a long distance using a fine-tuning process.
- Hyperparameter point: The rectangle shows the generation corresponding to the best point hyperparameters.
- Error of hyperparameters. The feature indicates an error in the classification phase.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CR | Cognitive radio |
CRN | Cognitive radio network |
SU | Secondary user |
PU | Primary user |
SS | Spectrum sensing |
CSS | Cooperative spectrum sensing |
TBA | Tree-based algorithm |
MCE | Minimum classification error |
OCC | Optical camera communication |
BLE | Bluetooth low energy |
ECG | Electrocardiogram |
IoT | Internet of things |
WBAN | Wireless body area network |
UAV | Unmanned aerial vehicle |
RL | Reinforcement learning |
CI-IoT | Cognitive industrial internet of things |
OMA | Orthogonal multiple access |
NOMA | Non-orthogonal multiple access |
FC-MAC | Fair and cooperative medium access control |
SC-BOMP | Sampling-controlled block orthogonal matching pursuit |
CSS | Compressive spectrum sensing |
CNN | Convolutional neural network |
DL | Deep learning |
ML | Machine learning |
SVM | Support vector machine |
VANET | Vehicle ad hoc network |
KBL | Kernel-based learning |
ROC | Receiver operating characteristic |
KNN | K-nearest neighbors |
AWGN | Additive white Gaussian noise |
Probability density function | |
SNR | Signal-to-noise ratio |
AI | Artificial intelligence |
References
- Naghshvarianjahromi, M.; Kumar, S.; Deen, M.J. Natural Intelligence as the Brain of Intelligent Systems. Sensors 2023, 23, 2859. [Google Scholar] [CrossRef]
- Lewandowski, M.; Płaczek, B.; Bernas, M. Classifier-Based Data Transmission Reduction in Wearable Sensor Network for Human Activity Monitoring. Sensors 2020, 21, 85. [Google Scholar] [CrossRef] [PubMed]
- Sodhro, A.H.; Zahid, N. AI-Enabled Framework for Fog Computing Driven E-Healthcare Applications. Sensors 2021, 21, 8039. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, O.; Kulaç, S. Determination of Effective Mode Selection for Ensuring Spectrum Efficiency with Massive MIMO in IoT Systems. Sensors 2019, 19, 706. [Google Scholar] [CrossRef] [PubMed]
- Sodhro, A.H.; Sennersten, C.; Ahmad, A. Towards Cognitive Authentication for Smart Healthcare Applications. Sensors 2022, 22, 2101. [Google Scholar] [CrossRef]
- Minty, E.; Bray, E.; Bachus, C.B.; Everett, B.; Smith, K.M.; Matijevich, E.; Hajizadeh, M.; Armstrong, D.G.; Liden, B. Preventative Sensor-Based Remote Monitoring of the Diabetic Foot in Clinical Practice. Sensors 2023, 23, 6712. [Google Scholar] [CrossRef]
- Islam, M.R.; Kabir, M.M.; Mridha, M.F.; Alfarhood, S.; Safran, M.; Che, D. Deep Learning-Based IoT System for Remote Monitoring and Early Detection of Health Issues in Real-Time. Sensors 2023, 23, 5204. [Google Scholar] [CrossRef]
- Hasan, M.K.; Shahjalal, M.; Chowdhury, M.Z.; Jang, Y.M. Real-time healthcare data transmission for remote patient monitoring in patch-based hybrid OCC/BLE networks. Sensors 2019, 19, 1208. [Google Scholar] [CrossRef]
- Zaitseva, E.; Levashenko, V.; Rabcan, J.; Kvassay, M. A New Fuzzy-Based Classification Method for Use in Smart/Precision Medicine. Bioengineering 2023, 10, 838. [Google Scholar] [CrossRef]
- Paik, S.H.; Kim, D.J. Smart healthcare systems and precision medicine. In Frontiers in Psychiatry: Artificial Intelligence, Precision Medicine, and Other Paradigm Shifts; Springer: Berlin/Heidelberg, Germany, 2019; pp. 263–279. [Google Scholar]
- Thirunavukarasu, R.; Gnanasambandan, R.; Gopikrishnan, M.; Palanisamy, V. Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review. Comput. Biol. Med. 2022, 149, 106020. [Google Scholar] [CrossRef]
- Ali, M.; Nam, H. Optimization of Spectrum Hole Utilization in Rayleigh Faded Cognitive Radio Networks. J. Signal Process. Syst. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Ehsan, M.K.; Shah, A.A.; Amirzada, M.R.; Naz, N.; Konstantin, K.; Sajid, M.; Gardezi, A.R. Characterization of sparse WLAN data traffic in opportunistic indoor environments as a prior for coexistence scenarios of modern wireless technologies. Alex. Eng. J. 2021, 60, 347–355. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Hassan, M.F.; Ehsan, M.K.; Khan, M.O.; Ali, M.Y.; Khan, S. A robust graph theoretic solution of routing in intelligent networks. Wirel. Commun. Mob. Comput. 2022, 2022, 9661411. [Google Scholar] [CrossRef]
- Naz, N.; Ehsan, M.K.; Amirzada, M.R.; Ali, M.Y.; Qureshi, M.A. Intelligence of autonomous vehicles: A concise revisit. J. Sens. 2022, 2022, 2690164. [Google Scholar] [CrossRef]
- Pan, Y.; Da, X.; Hu, H.; Huang, Y.; Zhang, M.; Cumanan, K.; Dobre, O.A. Joint Optimization of Trajectory and Resource Allocation for Time-Constrained UAV-Enabled Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2022, 71, 5576–5580. [Google Scholar] [CrossRef]
- Safdar Malik, T.; Razzaq Malik, K.; Afzal, A.; Ibrar, M.; Wang, L.; Song, H.; Shah, N. RL-IoT: Reinforcement Learning-Based Routing Approach for Cognitive Radio-Enabled IoT Communications. IEEE Internet Things J. 2023, 10, 1836–1847. [Google Scholar] [CrossRef]
- Dang, V.H.; Nguyen, L.M.D.; Vo, V.N.; Tran, H.; Ho, T.D.; So-In, C.; Sanguanpong, S. Throughput Optimization for Noma Energy Harvesting Cognitive Radio With Multi-UAV-Assisted Relaying Under Security Constraints. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 82–98. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.; Yu, W.; Zhou, M. Reinforcement-Learning-Based Dynamic Spectrum Access for Software-Defined Cognitive Industrial Internet of Things. IEEE Trans. Ind. Inf. 2022, 18, 4244–4253. [Google Scholar] [CrossRef]
- Tiwari, J.; Prakash, A.; Tripathi, R.; Naik, K. A Fair and Cooperative MAC Protocol for Heterogeneous Cognitive Radio Enabled Vehicular Ad-Hoc Networks. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1005–1018. [Google Scholar] [CrossRef]
- Qadeer, I.; Ehsan, M.K. Improved Channel Reciprocity for Secure Communication in Next Generation Wireless Systems. Comput. Mater. Contin. 2021, 67, 2619–2630. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.R.; Kim, Y.H.; Song, I. Spectrum sensing for cognitive radio network with multiple receive antennas under impulsive noise environments. J. Commun. Netw. 2021, 23, 171–179. [Google Scholar] [CrossRef]
- Ali, M.; Nam, H. Effect of spectrum sensing and transmission duration on spectrum hole utilisation in cognitive radio networks. IET Commun. 2017, 11, 2539–2543. [Google Scholar] [CrossRef]
- Ali, M.; Yasir, M.N.; Bhatti, D.M.S.; Nam, H. Optimization of Spectrum Utilization Efficiency in Cognitive Radio Networks. IEEE Wirel. Commun. Lett. 2022, 12, 426–430. [Google Scholar] [CrossRef]
- Lu, L.; Xu, W.; Wang, Y.; Tian, Z. Compressive Spectrum Sensing Using Sampling-Controlled Block Orthogonal Matching Pursuit. IEEE Trans. Commun. 2023, 71, 1096–1111. [Google Scholar] [CrossRef]
- Mehrabian, A.; Sabbaghian, M.; Yanikomeroglu, H. CNN-Based Detector for Spectrum Sensing With General Noise Models. IEEE Trans. Wirel. Commun. 2023, 22, 1235–1249. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sheets, L.R.; Chen, Y.W.; Shae, Z.Y.; Tsai, J.J.; Shyu, C.R. A Patient-Centric Health Information Exchange Framework Using Blockchain Technology. IEEE J. Biomed. Health Inform. 2020, 24, 2169–2176. [Google Scholar] [CrossRef]
- Aizaga-Villon, X.; Alarcon-Ballesteros, K.; Cordova-Garcia, J.; Padilla, V.S.; Velasquez, W. FIWARE-Based Telemedicine Apps Modeling for Patients’ Data Management. IEEE Eng. Manag. Rev. 2022, 50, 173–188. [Google Scholar] [CrossRef]
- Zahiri, M.; Wang, C.; Gardea, M.; Nguyen, H.; Shahbazi, M.; Sharafkhaneh, A.; Ruiz, I.T.; Nguyen, C.K.; Bryant, M.S.; Najafi, B. Remote Physical Frailty Monitoring– The Application of Deep Learning-Based Image Processing in Tele-Health. IEEE Access 2020, 8, 219391–219399. [Google Scholar] [CrossRef]
- Babar, E.T.R.; Rahman, M.U. A Smart, Low Cost, Wearable Technology for Remote Patient Monitoring. IEEE Sens. J. 2021, 21, 21947–21955. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Sangaiah, A.K.; Sodhro, G.H.; Lohano, S.; Pirbhulal, S. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications. Sensors 2018, 18, 923. [Google Scholar] [CrossRef]
- Haidegger, T.; Speidel, S.; Stoyanov, D.; Satava, R.M. Robot-Assisted Minimally Invasive Surgery—Surgical Robotics in the Data Age. Proc. IEEE 2022, 110, 835–846. [Google Scholar] [CrossRef]
- Baker, S.; Xiang, W. Artificial Intelligence of Things for Smarter Healthcare: A Survey of Advancements, Challenges, and Opportunities. IEEE Commun. Surveys Tuts. 2023, 25, 1261–1293. [Google Scholar] [CrossRef]
- Gao, J.; Nguyen, T.N.; Manogaran, G.; Chaudhary, A.; Wang, G.G. Redemptive Resource Sharing and Allocation Scheme for Internet of Things-Assisted Smart Healthcare Systems. IEEE J. Biomed. Health Inform. 2022, 26, 4238–4247. [Google Scholar] [CrossRef]
- Kumar, A.; Dhanagopal, R.; Albreem, M.A.; Le, D.N. A comprehensive study on the role of advanced technologies in 5G based smart hospital. Alex. Eng. J. 2021, 60, 5527–5536. [Google Scholar] [CrossRef]
- Jabbar, M.; Shandilya, S.K.; Kumar, A.; Shandilya, S. Applications of cognitive internet of medical things in modern healthcare. Comput. Electr. Eng. 2022, 102, 108276. [Google Scholar] [CrossRef]
- Rajiah, P.; Balaji Ganesh, A. Cooperative communication enabled cognitive radio in a home-care application. Wirel. Pers. Commun. 2021, 118, 19–42. [Google Scholar] [CrossRef]
- Le, T.T.T.; Moh, S. Energy-efficient protocol of link scheduling in cognitive radio body area networks for medical and healthcare applications. Sensors 2020, 20, 1355. [Google Scholar] [CrossRef]
- Shukla, A.K.; Upadhyay, P.K.; Srivastava, A.; Moualeu, J.M. Enabling co-existence of cognitive sensor nodes with energy harvesting in body area networks. IEEE Sens. J. 2021, 21, 11213–11223. [Google Scholar] [CrossRef]
- Hadi, M.S.; Lawey, A.Q.; El-Gorashi, T.E.; Elmirghani, J.M. Patient-centric HetNets powered by machine learning and big data analytics for 6G networks. IEEE Access 2020, 8, 85639–85655. [Google Scholar] [CrossRef]
- Jabeen, T.; Jabeen, I.; Ashraf, H.; Ullah, A.; Jhanjhi, N.Z.; Ghoniem, R.M.; Ray, S.K. Smart Wireless Sensor Technology for Healthcare Monitoring System Using Cognitive Radio Networks. Sensors 2023, 23, 6104. [Google Scholar] [CrossRef]
- Ahad, A.; Tahir, M.; Aman Sheikh, M.; Ahmed, K.I.; Mughees, A.; Numani, A. Technologies trend towards 5G network for smart health-care using IoT: A review. Sensors 2020, 20, 4047. [Google Scholar] [CrossRef]
- Mitra, A.; Bera, B.; Das, A.K.; Jamal, S.S.; You, I. Impact on blockchain-based AI/ML-enabled big data analytics for cognitive Internet of Things environment. Comput. Commun. 2023, 197, 173–185. [Google Scholar] [CrossRef]
- Xu, G.; Khan, A.S.; Moshayedi, A.J.; Zhang, X.; Shuxin, Y. The Object Detection, Perspective and Obstacles In Robotic: A Review. EAI Endorsed Trans. AI Robot. 2022, 1, e13. [Google Scholar] [CrossRef]
- Ragno, L.; Borboni, A.; Vannetti, F.; Amici, C.; Cusano, N. Application of Social Robots in Healthcare: Review on Characteristics, Requirements, Technical Solutions. Sensors 2023, 23, 6820. [Google Scholar] [CrossRef]
- Barua, A.; Zhang, Z.Y.; Al-Turjman, F.; Yang, X. Cognitive intelligence for monitoring fractured post-surgery ankle activity using channel information. IEEE Access 2020, 8, 112113–112129. [Google Scholar] [CrossRef]
- Ahmed, R.; Chen, Y.; Hassan, B.; Du, L. CR-IoTNet: Machine learning based joint spectrum sensing and allocation for cognitive radio enabled IoT cellular networks. Ad Hoc Netw. 2021, 112, 102390. [Google Scholar] [CrossRef]
- Saber, M.; El Rharras, A.; Saadane, R.; Kharraz, A.H.; Chehri, A. An optimized spectrum sensing implementation based on SVM, KNN and TREE algorithms. In Proceedings of the 2019 IEEE 15th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), Sorrento-Naples, Italy, 26–29 November 2019; pp. 383–389. [Google Scholar]
- Klibi, S.; Mestiri, M.; Farah, I.R. Emotional behavior analysis based on EEG signal processing using Machine Learning: A case study. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Virtual, 4–5 July 2021; pp. 1–7. [Google Scholar]
- Pandian, P.; Selvaraj, C.; Bhalaji, N.; Arun Depak, K.G.; Saikrishnan, S. Machine Learning based Spectrum Prediction in Cognitive Radio Networks. In Proceedings of the 2023 International Conference on Networking and Communications (ICNWC), Chennai, India, 5–6 April 2023; pp. 1–6. [Google Scholar]
- Alex, S.; Dhanaraj, K.J.; Deepthi, P.P. Private and Energy-Efficient Decision Tree-Based Disease Detection for Resource-Constrained Medical Users in Mobile Healthcare Network. IEEE Access 2022, 10, 17098–17112. [Google Scholar] [CrossRef]
- Liang, J.; Qin, Z.; Xue, L.; Lin, X.; Shen, X. Efficient and Privacy-Preserving Decision Tree Classification for Health Monitoring Systems. IEEE Internet Things J. 2021, 8, 12528–12539. [Google Scholar] [CrossRef]
- Al-Nammari, R.; Simsekler, M.C.E.; Gabor, A.F.; Qazi, A. Exploring Drivers of Staff Engagement in Healthcare Organizations Using Tree-Based Machine Learning Algorithms. IEEE Trans. Eng. Manag. 2023, 70, 2988–2997. [Google Scholar] [CrossRef]
- Hossain, M.A.; Md Noor, R.; Yau, K.L.A.; Azzuhri, S.R.; Z’aba, M.R.; Ahmedy, I.; Jabbarpour, M.R. Machine learning-based cooperative spectrum sensing in dynamic segmentation enabled cognitive radio vehicular network. Energies 2021, 14, 1169. [Google Scholar] [CrossRef]
- Abusubaih, M.A.; Khamayseh, S. Performance of Machine Learning-Based Techniques for Spectrum Sensing in Mobile Cognitive Radio Networks. IEEE Access 2021, 10, 1410–1418. [Google Scholar] [CrossRef]
- Huang, X.L.; Li, Y.X.; Gao, Y.; Tang, X.W. Q-learning-based spectrum access for multimedia transmission over cognitive radio networks. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 110–119. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, K. Imperfect CSI based intelligent dynamic spectrum management using cooperative reinforcement learning framework in cognitive radio networks. IEEE Trans. Mobile Comput. 2020, 21, 1672–1683. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, W.; Zhang, S.; Liu, J.; Kato, N. Machine learning-enabled cooperative spectrum sensing for non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 2020, 19, 5692–5702. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Wan, P.; Zhuang, J.; Zhang, Y.; Li, Y. Clustering Algorithm-Based Data Fusion Scheme for Robust Cooperative Spectrum Sensing. IEEE Access 2020, 8, 5777–5786. [Google Scholar] [CrossRef]
- Arjoune, Y.; Kaabouch, N. On spectrum sensing, a machine learning method for cognitive radio systems. In Proceedings of the 2019 IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20–22 May 2019; pp. 333–338. [Google Scholar]
- Ali, M.; Nam, H. Optimization of spectrum utilization in cooperative spectrum sensing. Sensors 2019, 19, 1922. [Google Scholar] [CrossRef]
- Chethana, C. Tree based Predictive Modelling for Prediction of the Accuracy of Diabetics. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–6. [Google Scholar]
- Zhao, C.; Wu, D.; Huang, J.; Yuan, Y.; Zhang, H.T.; Peng, R.; Shi, Z. BoostTree and BoostForest for Ensemble Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 8110–8126. [Google Scholar] [CrossRef]
- Ghosh, P.; Azam, S.; Jonkman, M.; Karim, A.; Shamrat, F.M.J.M.; Ignatious, E.; Shultana, S.; Beeravolu, A.R.; De Boer, F. Efficient Prediction of Cardiovascular Disease Using Machine Learning Algorithms With Relief and LASSO Feature Selection Techniques. IEEE Access 2021, 9, 19304–19326. [Google Scholar] [CrossRef]
- Noor, N.S.E.M.; Ibrahim, H.; Lah, M.H.C.; Abdullah, J.M. Improving Outcome Prediction for Traumatic Brain Injury From Imbalanced Datasets Using RUSBoosted Trees on Electroencephalography Spectral Power. IEEE Access 2021, 9, 121608–121631. [Google Scholar] [CrossRef]
- Younis, E.M.G.; Zaki, S.M.; Kanjo, E.; Houssein, E.H. Evaluating Ensemble Learning Methods for Multi-Modal Emotion Recognition Using Sensor Data Fusion. Sensors 2022, 22, 5611. [Google Scholar] [CrossRef]
- Reddy, K.V.V.; Elamvazuthi, I.; Aziz, A.A.; Paramasivam, S.; Chua, H.N.; Pranavanand, S. Prediction of Heart Disease Risk Using Machine Learning with Correlation-based Feature Selection and Optimization Techniques. In Proceedings of the 2021 7th International Conference on Signal Processing and Communication (ICSC), Noida, India, 25–27 November 2021; pp. 228–233. [Google Scholar]
- Kim, K.R.; Kim, Y.; Park, S. A Probabilistic Machine Learning Approach to Scheduling Parallel Loops With Bayesian Optimization. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1815–1827. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB Version: 9.13.0 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022; Available online: https://www.mathworks.com (accessed on 17 July 2023).
- Xie, J.; Fang, J.; Liu, C.; Yang, L. Unsupervised deep spectrum sensing: A variational auto-encoder based approach. IEEE Trans. Veh. Technol. 2020, 69, 5307–5319. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Q.; Shikh-Bahaei, M.R. On ensemble learning-based secure fusion strategy for robust cooperative sensing in full-duplex cognitive radio networks. IEEE Trans. Commun. 2020, 68, 6086–6100. [Google Scholar] [CrossRef]
- Davaslioglu, K.; Soltani, S.; Erpek, T.; Sagduyu, Y.E. DeepWiFi: Cognitive WiFi with deep learning. IEEE Trans. Mobile Comput. 2019, 20, 429–444. [Google Scholar] [CrossRef]
Classifiers | 1000 Samples | 1500 Samples | 2000 Samples | 2500 Samples | ||||
---|---|---|---|---|---|---|---|---|
Training Accuracy (%) | Testing Accuracy (%) | Training Accuracy (%) | Testing Accuracy (%) | Training Accuracy (%) | Testing Accuracy (%) | Training Accuracy (%) | Testing Accuracy (%) | |
Fine Tree | 85.00 | 85.00 | 92.10 | 91.70 | 94.30 | 93.30 | 97.10 | 96.70 |
Medium tree | 85.00 | 85.00 | 92.10 | 91.70 | 94.30 | 93.30 | 97.10 | 96.70 |
Coarse Tree | 88.60 | 85.00 | 92.10 | 91.70 | 95.70 | 93.30 | 97.10 | 96.00 |
Boosted Trees | 76.40 | 80.00 | 88.60 | 90.00 | 83.60 | 93.30 | 90.00 | 95.00 |
Bagged Trees | 83.60 | 80.00 | 89.30 | 90.00 | 93.60 | 93.30 | 97.10 | 95.00 |
RUSBoosted Trees | 75.70 | 76.70 | 88.60 | 88.30 | 83.60 | 93.30 | 90.00 | 95.00 |
Optimizable Tree | 89.30 | 86.70 | 92.90 | 91.70 | 96.40 | 96.70 | 98.60 | 96.70 |
Classifiers | 1000 Samples | 1500 Samples | 2000 Samples | 2500 Samples | ||||
---|---|---|---|---|---|---|---|---|
Training Accuracy (%) | Testing Accuracy (%) | Training Accuracy (%) | Testing Accuracy (%) | Training Accuracy (%) | Testing Accuracy (%) | Training Accuracy (%) | Testing Accuracy (%) | |
Fine Tree | 82.90 | 85.00 | 90.00 | 88.30 | 93.60 | 93.30 | 97.10 | 95.00 |
Medium tree | 82.90 | 85.00 | 90.60 | 88.30 | 93.60 | 93.30 | 97.10 | 95.00 |
Coarse Tree | 83.60 | 85.00 | 91.40 | 90.00 | 93.60 | 95.00 | 97.10 | 95.00 |
Boosted Trees | 71.40 | 75.00 | 75.70 | 85.00 | 82.10 | 90.00 | 87.10 | 93.30 |
Bagged Trees | 77.90 | 75.30 | 89.30 | 85.00 | 92.90 | 90.00 | 95.70 | 93.30 |
RUSBoosted Trees | 73.60 | 80.00 | 80.40 | 85.00 | 84.30 | 85.00 | 87.10 | 91.70 |
Optimizable Tree | 87.10 | 85.00 | 93.60 | 91.70 | 94.30 | 95.00 | 98.00 | 95.00 |
Classifiers | Accuracy (Theoretical) | Accuracy (Simulated) |
---|---|---|
Optimizable Tree [proposed] | 95% | 96% |
Tri-Agent Reinforcement Learning (TARL) [54] | 94% | – |
Unsupervised Deep Spectrum Sensing (UDSS) [70] | 86% | – |
Back-Propagation Neural Network (BPNN) [58] | – | 90% |
Ensemble Machine Learning (EML) [71] | – | 89% |
Minimum Covariance Determinant (MCD) [72] | – | 89.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, A.; Ali, M.; Ehsan, M.K.; Sodhro, A.H. Spectrum Evaluation in CR-Based Smart Healthcare Systems Using Optimizable Tree Machine Learning Approach. Sensors 2023, 23, 7456. https://doi.org/10.3390/s23177456
Raza A, Ali M, Ehsan MK, Sodhro AH. Spectrum Evaluation in CR-Based Smart Healthcare Systems Using Optimizable Tree Machine Learning Approach. Sensors. 2023; 23(17):7456. https://doi.org/10.3390/s23177456
Chicago/Turabian StyleRaza, Ahmad, Mohsin Ali, Muhammad Khurram Ehsan, and Ali Hassan Sodhro. 2023. "Spectrum Evaluation in CR-Based Smart Healthcare Systems Using Optimizable Tree Machine Learning Approach" Sensors 23, no. 17: 7456. https://doi.org/10.3390/s23177456