Surface Quality Improvement for Ultrasonic-Assisted Inner Diameter Sawing with Six-Axis Force Sensors
<p>Ultrasonic-assisted inner diameter sawing schematic diagram.</p> "> Figure 2
<p>Schematic diagram of ceramic processing.</p> "> Figure 3
<p>Effective sawing time for ultrasonic vibration-assisted inner diameter sawing.</p> "> Figure 4
<p>The central angle of a single abrasive particle during the sawing process with ultrasonic-assisted inner diameter sawing.</p> "> Figure 5
<p>Ultrasonic-assisted inner diameter sawing indentation and spherical abrasive particles. (<b>a</b>) Model of indentation produced by spherical abrasive particles; (<b>b</b>) model of spherical abrasive particles.</p> "> Figure 6
<p>A fracture zone produced by an abrasive particle in ultrasonic-assisted inner diameter sawing.</p> "> Figure 7
<p>Ultrasonic vibration-assisted inner diameter sawing device.</p> "> Figure 8
<p>Fitting calculation for <span class="html-italic">K<sub>v</sub></span>.</p> "> Figure 9
<p>Comparison of experimental data and fitting curves. (<b>a</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm, <span class="html-italic">W</span> = 3000 r/min; (<b>b</b>) <span class="html-italic">f<sub>j</sub></span> = 0.0633 mm/s, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5, <span class="html-italic">W</span> = 3200 r/min; (<b>c</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.085 mm, <span class="html-italic">A<sub>f</sub></span> = 6 μm, <span class="html-italic">r<sub>n</sub></span> = 41.5 mm, <span class="html-italic">h<sub>n</sub></span> = 0.4 mm, <span class="html-italic">W</span> = 3200 r/min; (<b>d</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5, <span class="html-italic">W</span> = 2400 r/min; (<b>e</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 6 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm, <span class="html-italic">W</span> = 3000 r/min; (<b>f</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.065 mm, <span class="html-italic">A<sub>f</sub></span> = 6 μm, <span class="html-italic">r<sub>n</sub></span> = 41.5 mm, <span class="html-italic">h<sub>n</sub></span> = 0.3, <span class="html-italic">W</span> = 3000 r/min.</p> "> Figure 9 Cont.
<p>Comparison of experimental data and fitting curves. (<b>a</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm, <span class="html-italic">W</span> = 3000 r/min; (<b>b</b>) <span class="html-italic">f<sub>j</sub></span> = 0.0633 mm/s, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5, <span class="html-italic">W</span> = 3200 r/min; (<b>c</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.085 mm, <span class="html-italic">A<sub>f</sub></span> = 6 μm, <span class="html-italic">r<sub>n</sub></span> = 41.5 mm, <span class="html-italic">h<sub>n</sub></span> = 0.4 mm, <span class="html-italic">W</span> = 3200 r/min; (<b>d</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5, <span class="html-italic">W</span> = 2400 r/min; (<b>e</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 6 μm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm, <span class="html-italic">W</span> = 3000 r/min; (<b>f</b>) <span class="html-italic">f<sub>j</sub></span> = 0.033 mm/s, <span class="html-italic">r<sub>n</sub></span> = 0.065 mm, <span class="html-italic">A<sub>f</sub></span> = 6 μm, <span class="html-italic">r<sub>n</sub></span> = 41.5 mm, <span class="html-italic">h<sub>n</sub></span> = 0.3, <span class="html-italic">W</span> = 3000 r/min.</p> "> Figure 10
<p>Error analysis of the normal sawing force model with rigid spherical abrasive particles.</p> "> Figure 11
<p>Error analysis of the maximum normal sawing force. (<b>a</b>) Error analysis of the monocrystalline silicon sawing experiment [<a href="#B21-sensors-23-06444" class="html-bibr">21</a>], (<b>b</b>) error statistical analysis of monocrystalline silicon [<a href="#B21-sensors-23-06444" class="html-bibr">21</a>], (<b>c</b>) error analysis of the alumina ceramic sawing experiment, (<b>d</b>) statistical error analysis of alumina ceramics.</p> "> Figure 12
<p>The influence of cutting parameters on the maximum normal sawing force. (<b>a</b>) <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">A<sub>f</sub></span> = 3.2 μm. <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>b</b>) <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>n</sub></span> = 41.5 mm; (<b>c</b>) <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm, <span class="html-italic">W</span> = 3000 r/min; (<b>d</b>) <span class="html-italic">A<sub>f</sub></span> = 3.2 μm, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>n</sub></span> = 41.5 mm.</p> "> Figure 13
<p>Relationship between slice surface quality and normal maximum sawing force. (<b>a</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>b</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>c</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>d</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>e</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>f</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>g</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>h</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>i</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>j</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>k</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>l</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>m</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>n</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>o</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm.</p> "> Figure 13 Cont.
<p>Relationship between slice surface quality and normal maximum sawing force. (<b>a</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>b</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>c</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>d</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>e</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>f</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>g</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>h</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>i</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>j</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>k</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>l</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>m</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>n</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>o</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm.</p> "> Figure 13 Cont.
<p>Relationship between slice surface quality and normal maximum sawing force. (<b>a</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>b</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>c</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>d</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>e</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>f</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>g</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>h</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>i</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>j</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>k</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>l</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>m</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>n</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>o</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm.</p> "> Figure 13 Cont.
<p>Relationship between slice surface quality and normal maximum sawing force. (<b>a</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>b</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>c</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>d</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>e</b>) <span class="html-italic">v</span> = 0.083 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>f</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>g</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>h</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>i</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>j</b>) <span class="html-italic">v</span> = 0.067 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>k</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2400 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>l</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2600 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>m</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 2800 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>n</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3000 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm; (<b>o</b>) <span class="html-italic">v</span> = 0.050 mm/s, <span class="html-italic">W</span> = 3200 r/min, <span class="html-italic">r<sub>m</sub></span> = 0.097 mm, <span class="html-italic">r<sub>n</sub></span> = 45 mm, <span class="html-italic">h<sub>n</sub></span> = 0.5 mm.</p> ">
Abstract
:1. Introduction
2. Development of the Model of the Inner Diameter Sawing System
2.1. Sawing Depth Modeling
2.2. Normal Sawing Force
2.3. Active Abrasive Particle Modeling
2.4. Fracture Removal Volume
3. Sawing Experiment with Alumina Ceramics
3.1. Experiment Setup
3.2. Experimental Design
4. Model Validation and Discussion
4.1. Calculation of the Fracture Toughness Coefficient
4.2. Modeling of Normal Sawing Force
4.3. Normal Sawing Force and Surface Quality
5. Conclusions
- (i)
- A novel ultrasonic-assisted force model for inner diameter sawing was proposed by using the six-axis forces data sampled in processing;
- (ii)
- Spherical abrasive particles were applied in the sawing force model to improve prediction accuracy. For the processing example with alumina ceramics, the mean value and variance of the proposed model’s prediction error were reduced by 5.08% and 2.56% compared to the regular tetrahedral abrasive model;
- (iii)
- The highest normal sawing force peak could be obviously reduced and the surface quality of the slices significantly improved with the proposed sawing force model by adjusting the process parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tumac, D. Predicting the performance of large diameter circular saws based on Schmidt hammer and other properties for some Turkish carbonate rocks. Int. J. Rock Mech. Min. Sci. 2015, 75, 159–168. [Google Scholar] [CrossRef]
- Pei, Y.C.; Zhang, H. Slicing process dynamic modelling of inner-diameter saw blade. Appl. Math. Model. 2021, 94, 152–168. [Google Scholar] [CrossRef]
- My, A.; Ha, B. Prediction of specific cutting energy for large diameter circular saws during natural stone cutting. Int. J. Rock Mech. Min. Sci. 2012, 53, 38–44. [Google Scholar]
- Yao, C.Y.; Xu, Z.H.; Zhang, W.; Zhang, Q.F.; Peng, W. Experimental Study on Temperature during Wire Saw Slicing. In Proceedings of the 2013 2nd International Symposium on Quantum, Nano and Micro Technologies (ISQNM 2013), Hong Kong, China, 1–2 December 2013. [Google Scholar]
- Liu, B.C.; Zhang, Z.P.; Sun, Y.H. Sawing trajectory and mechanism of diamond wire saw. In Advances in Grinding and Abrasive Processes: Selected Papers from the 12th Grinding and Machining Conference 28–30 November 2003, Kunming, China (Key Engineering Materials); Xu, X.P., Ed.; Trans Tech Publications, Ltd.: Bach, Switzerland, 2003; Volume 259-2, pp. 395–400. [Google Scholar]
- Li, Z.; Wang, M.J.; Cai, Y.J.; Jia, H.L. Experimental study on surface topography and fracture strength of worn saw wire in multi-wire sawing. Int. J. Adv. Manuf. Technol. 2017, 93, 4125–4132. [Google Scholar] [CrossRef]
- Wu, H. Wire sawing technology: A state-of-the-art review. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2016, 43, 1–9. [Google Scholar] [CrossRef]
- Wei, X.; Yuan, H.; Huang, R.; Lai, S. Wear Characteristics of ID Saw Blade in Silicon Ingot Slicing Process. In Advances in Materianls Manufacturing Science and Technology II; Trans Tech Publications, Ltd.: Bach, Switzerland, 2006. [Google Scholar]
- Jiang, Z.W.; Fujiwara, S.; Chonan, S.; Kawashima, K. Development of ID-blade slicer monitoring system for cutting 12-inch silicon ingot. Int. J. Appl. Electromagn. Mech. 2001, 15, 67–72. [Google Scholar] [CrossRef]
- Pei, Y.C.; Zhang, H.; Wang, J.H. Analytical study on the stiffness and natural frequency improvements of tensioned inner-diameter saw blade. Eur. J. Mech. A-Solids 2019, 75, 197–204. [Google Scholar] [CrossRef]
- Egea, A.J.S.; Martynenko, V.; Krahmer, D.M.; de Lacalle, L.N.L.; Benitez, A.; Genovese, G. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete. Materials 2018, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Yamshchikov, O.N.; Markov, D.A.; Emelyanov, S.A.; Zvereva, K.P.; Bychkov, A.E. Comparative analysis of modelled femoral fractures osteosynthesis stability. Kazan Med. J. 2014, 95, 392–394. [Google Scholar] [CrossRef]
- Lin, G.Y.; Cuc, L.T.; Lu, W.; Tsai, C.J.; Chein, H.M.; Chang, F.T. High-efficiency wet electrocyclone for removing fine and nanosized particles. Sep. Purif. Technol. 2013, 114, 99–107. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Ni, C.; Ning, J. Investigation of surface topography formation mechanism based on abrasive-workpiece contact rate model in tangential ultrasonic vibration-assisted CBN grinding of ZrO2 ceramics. Int. J. Mech. Sci. 2019, 155, 66–82. [Google Scholar] [CrossRef]
- Wu, H.Q.; Duan, W.H.; Sun, L.H.; Zeng, J.; Li, S.; Wang, Q.; Wu, Y.; Chen, Y. Effect of ultrasonic vibration on the machining performance and mechanism of hybrid ultrasonic vibration/plasma oxidation assisted grinding. J. Manuf. Process. 2023, 94, 466–478. [Google Scholar] [CrossRef]
- Zhu, X.-X.; Wang, W.-H.; Jiang, R.-S.; Zhang, Z.-F.; Huang, B.; Ma, X.-W. Research on ultrasonic-assisted drilling in micro-hole machining of the DD6 superalloy. Adv. Manuf. 2020, 8, 405–417. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Z.; Yu, Y.; Lai, Z.; Zhu, J.; Xu, X.; Peng, Q. Processing and machining mechanism of ultrasonic vibration-assisted grinding on sapphire. Mater. Sci. Semicond. Process. 2022, 142, 106470. [Google Scholar] [CrossRef]
- Muhammad, R. A Fuzzy Logic Model for the Analysis of Ultrasonic Vibration Assisted Turning and Conventional Turning of Ti-Based Alloy. Materials 2021, 14, 6572. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Zhang, L.; Wang, S.; Gu, Z. Feasibility study on machining extra-large aspect ratio aviation deep-hole Ti6Al4V part with axial ultrasonic vibration-assisted boring. Int. J. Adv. Manuf. Technol. 2021, 118, 3995–4017. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Zhang, Z.; Gao, K.; Li, J.; Xie, X. The rock breaking mechanism analysis of axial ultra-high frequency vibration assisted drilling by single PDC cutter. J. Pet. Sci. Eng. 2021, 205, 108859. [Google Scholar] [CrossRef]
- Zhang, H.; Pei, Y.-C.; Wang, L.-L.; Liu, Q.-J. A normal force model for ultrasonic vibration-assisted inner-diameter slicing of hard and brittle materials. J. Manuf. Process. 2021, 72, 15–28. [Google Scholar] [CrossRef]
- Venkata Siva, S.B.; Sahoo, K.L.; Ganguly, R.I.; Dash, R.R.; Singh, S.K.; Satpathy, B.K.; Srinivasarao, G. Preparation of Aluminium Metal Matrix Composite with Novel In situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material. Metall. Mater. Trans. B 2013, 44, 800–808. [Google Scholar] [CrossRef]
- Bugaeva, A.Y. Ceramic matrix filled composite prepared by the sol-gel method. Glass Phys. Chem. 2012, 38, 149–154. [Google Scholar] [CrossRef]
- Ge, G.; Chen, X.; Li, J.; Zhang, D.; He, M.; Wang, W.; Zhou, Y.; Zhong, J.; Tang, B.; Fang, J.; et al. Accuracy Improvement of a Compact 85Rb Atom Gravimeter by Suppressing Laser Crosstalk and Light Shift. Sensors 2023, 23, 6115. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, Y.; Wen, L.; Zhang, X.; Guo, Q. Effects of Hot Pixels on Pixel Performance on Backside Illuminated Complementary Metal Oxide Semiconductor (CMOS) Image Sensors. Sensors 2023, 23, 6159. [Google Scholar] [CrossRef] [PubMed]
- Alemayoh, T.T.; Shintani, M.; Lee, J.H.; Okamoto, S. Deep-Learning-Based Character Recognition from Handwriting Motion Data Captured Using IMU and Force Sensors. Sensors 2022, 22, 7840. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.M.; Prabhakar, D.; Pei, Z.J.; Haselkorn, M. A Mechanistic Approach to the Prediction of Material Removal Rates in Rotary Ultrasonic Machining. J. Eng. Ind. 1995, 117, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Komaraiah, M.; Narasimha Reddy, P. A study on the influence of workpiece properties in ultrasonic machining. Int. J. Mach. Tools Manuf. 1993, 33, 495–505. [Google Scholar] [CrossRef]
- Zhang, H.; Pei, Y.-C.; Liu, Q.-J.; Wang, L.-L. An ultrasonic vibration-assisted system development for inner-diameter sawing hard and brittle material. J. Mater. Process. Technol. 2021, 295, 117155. [Google Scholar] [CrossRef]
Case | Spindle Speed W r/min | Feed Rate fj mm/s | Radius of Spherical Abrasive Particles rm mm | Amplitude Af μm |
---|---|---|---|---|
1 | 2400 | 0.083 | 0.106 | 3.2 |
2 | 2400 | 0.05 | 0.097 | 3.8 |
3 | 2400 | 0.033 | 0.065 | 2.5 |
4 | 2400 | 0.033 | 0.085 | 4.4 |
5 | 2400 | 0.067 | 0.074 | 5.5 |
6 | 2600 | 0.05 | 0.065 | 4.4 |
7 | 2600 | 0.033 | 0.106 | 5.5 |
8 | 2600 | 0.083 | 0.074 | 3.8 |
9 | 2600 | 0.067 | 0.097 | 2.5 |
10 | 2600 | 0.033 | 0.085 | 3.2 |
11 | 2800 | 0.067 | 0.065 | 3.2 |
12 | 2800 | 0.033 | 0.106 | 3.8 |
13 | 2800 | 0.083 | 0.097 | 4.4 |
14 | 2800 | 0.05 | 0.085 | 5.5 |
15 | 2800 | 0.033 | 0.074 | 2.5 |
16 | 3000 | 0.033 | 0.074 | 4.4 |
17 | 3000 | 0.033 | 0.097 | 3.2 |
18 | 3000 | 0.083 | 0.065 | 5.5 |
19 | 3000 | 0.067 | 0.085 | 3.8 |
20 | 3000 | 0.05 | 0.106 | 2.5 |
21 | 3200 | 0.067 | 0.106 | 4.4 |
22 | 3200 | 0.05 | 0.074 | 3.2 |
23 | 3200 | 0.033 | 0.065 | 3.8 |
24 | 3200 | 0.083 | 0.085 | 2.5 |
25 | 3200 | 0.033 | 0.097 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, L.; Jiang, B.; Pei, Y.; Lu, H. Surface Quality Improvement for Ultrasonic-Assisted Inner Diameter Sawing with Six-Axis Force Sensors. Sensors 2023, 23, 6444. https://doi.org/10.3390/s23146444
Zhao J, Wang L, Jiang B, Pei Y, Lu H. Surface Quality Improvement for Ultrasonic-Assisted Inner Diameter Sawing with Six-Axis Force Sensors. Sensors. 2023; 23(14):6444. https://doi.org/10.3390/s23146444
Chicago/Turabian StyleZhao, Jinghe, Lulu Wang, Bo Jiang, Yongchen Pei, and Huiqi Lu. 2023. "Surface Quality Improvement for Ultrasonic-Assisted Inner Diameter Sawing with Six-Axis Force Sensors" Sensors 23, no. 14: 6444. https://doi.org/10.3390/s23146444