Radiation Source Localization Using a Model-Based Approach
<p>Schematic figure of the idea behind the mathematical model. The intensity measured by the probe is inversely proportional to the distance from the unknown source point of radiation, thus, the coordinates of the source point can be found by minimizing the difference between the observed and modeled intensity measurements.</p> "> Figure 2
<p>Drone-fitted experimental devices for dose distribution measurements in the field (pictures order is: (<b>a</b>–<b>d</b>) Inspire I with one GM-tube detector (<b>a</b>), Inspire I with four GM-tube detectors (<b>b</b>), Mavis Pro with small scintillation detector (<b>c</b>), Inspire I with scintillation detector suitable for fast spectrum analysis (<b>d</b>).</p> "> Figure 3
<p>Evaluation of the native data of the GM tube measurement performed in the test area with continuous scanning flight mode.</p> "> Figure 4
<p>Evaluation of the native data of the scintillation detector measurement performed in the test area with continuous scanning flight mode.</p> "> Figure 5
<p>Evaluation of the data of the scintillation detector measurement performed in the test area, with continuous scanning flight mode, cleaned of divergent noise.</p> "> Figure 6
<p>Static measurement to determine the special spectrum of the tested sample.</p> "> Figure 7
<p>Evaluation of the energy-selective native data of the scintillation detector measurement performed in the test area with continuous scanning flight.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model of Spatial Intensity Distribution
2.2. Instruments Used for the Experiments
3. Results
3.1. The General Characteristics of the Measurements
3.2. Carrying Out Measurements
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vetter, K.; Barnowski, R.; Cates, J.W.; Haefner, A.; Joshi, T.H.Y.; Pavlovsky, R.; Quiter, B.J. Advances in Nuclear Radiation Sensing: Enabling 3-D Gamma-Ray Vision. Sensors 2019, 19, 2541. [Google Scholar] [CrossRef] [Green Version]
- Barajas, C.A.; Polf, J.C.; Gobbert, M.K. Deep residual fully connected neural network classification of Compton camera based prompt gamma imaging for proton radiotherapy. Front. Phys. 2023, 11, 903929. [Google Scholar] [CrossRef]
- Accorsi, R.; Metzler, S.D. Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans. Med. Imaging 2004, 23, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Islamian, J.; Azazrm, A.; Mahmoudian, B.; Gharapapagh, E. Advances in Pinhole and Multi-Pinhole Collimators for Single Photon Emission Computed Tomography Imaging. World J. Nucl. Med. 2015, 14, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Noviello, C.; Esposito, G.; Fasano, G.; Renga, A.; Soldovieri, F.; Catapano, I. Small-UAV radar imaging system performance with GPS and CDGPS based motion compensation. Remote Sens. 2020, 12, 3463. [Google Scholar] [CrossRef]
- Anfre, P.; Dujardin, C.; Fourmigue, J.-M.; Hautefeuille, B.; Lebbou, K.; Pedrini, C.; Perrodin, D.; Tillement, O. Evaluation of fiber-shaped LYSO for double readout gamma photon detection. IEEE Trans. Nucl. Sci. 2007, 54, 391–397. [Google Scholar] [CrossRef]
- Molnar, A.; Lovas, I.; Domozi, Z. Measurement of outdoor gamma dose distribution with a multicopter. In Proceedings of the 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES), Reykjavík, Iceland, 8–10 July 2020; pp. 103–108. [Google Scholar] [CrossRef]
- Lovas, I. Fixed Point, Iteration-based, Adaptive Controller Tuning, Using a Genetic Algorithm. Acta Polytech. 2022, 19, 59–77. [Google Scholar] [CrossRef]
- Kvasznicza, Z.; Gyurcsek, I.; Elmer, G.; Bagdan, V.; Horvath, I. Mathability of EMC Emission Testing for Mission Crucial Devices in GTEM Waveguide. Acta Polytech. Hung. 2021, 18, 159–173. [Google Scholar] [CrossRef]
- Molnar, A.; Domozi, Z.; Lovas, I. Drone-Based Gamma Radiation Dose Distribution Survey with a Discrete Measurement Point Procedure. Sensors 2021, 21, 4930. [Google Scholar] [CrossRef]
- Molnar, A. Three-Dimensional Detection of Gamma Radiation and Polluting Gases Using Quadrocopters. Bull. Dagestan State Tech. Univ. 2020, 47, 102–116. [Google Scholar] [CrossRef]
- Jiang, S.B.; Sharp, G.C.; Neicu, T.; Berbeco, R.I.; Flampouri, S.; Bortfeld, T. On dose distribution comparison. Phys. Med. Biol. 2006, 51, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valaee, S.; Champagne, B.; Kabal, P. Parametric localization of distributed sources. IEEE Trans. Signal Process. 1995, 43, 2144–2153. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Schraml, S.; Hubner, M.; Taupe, P.; Hofstätter, M.; Amon, P.; Rothbacher, D. Real-Time Gamma Radioactive Source Localization by Data Fusion of 3D-LiDAR Terrain Scan and Radiation Data from Semi-Autonomous UAV Flights. Sensors 2022, 22, 9198. [Google Scholar] [CrossRef] [PubMed]
- Miles, P.R.; Cook, J.A.; Angers, Z.V.; Swenson, C.J.; Kiedrowski, B.C.; Mattingly, J.; Smith, R.C. Radiation Source Localization Using Surrogate Models Constructed from 3-D Monte Carlo Transport Physics Simulations. Nucl. Technol. 2021, 207, 37–53. [Google Scholar] [CrossRef]
- Dicke, R.H. Scatter-hole cameras for x-rays and gamma rays. Astrophys. J. 1968, 153, L101. [Google Scholar] [CrossRef]
- Frontline Systems, Inc. Excel Solver. 2016. Available online: http://www.solver.com (accessed on 1 January 2020).
- Good, W.; Kip, A.; Brown, S. Design of Beta-Ray and Gamma-Ray Geiger-Müller Counters. Rev. Sci. Instrum. 1946, 17, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Nikl, M. Scintillation detectors for x-rays. Meas. Sci. Technol. 2006, 17, R37. [Google Scholar] [CrossRef]
- Choi, S.Y.; Cha, D. Unmanned aerial vehicles using machine learning for autonomous flight; state-of-the-art. Adv. Robot. 2019, 33, 265–277. [Google Scholar] [CrossRef]
- Meier, L.; Tanskanen, P.; Fraundorfer, F.; Pollefeys, M. PIXHAWK: A system for autonomous flight using onboard computer vision. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2992–2997. [Google Scholar] [CrossRef]
- LND, Inc. Oceanside, New York, USA Product Datasheet. Available online: https://www.lndinc.com/products/geiger-mueller-tubes/7808/ (accessed on 2 February 2023).
- Wan, S.; Lu, J.; Fan, P.; Letaief, K.B. Toward Big Data Processing in IoT: Path Planning and Resource Management of UAV Base Stations in Mobile-Edge Computing System. IEEE Internet Things J. 2020, 7, 5995–6009. [Google Scholar] [CrossRef] [Green Version]
- Šálek, O.; Matolín, M.; Gryc, L. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry. J. Environ. Radioact. 2018, 182, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Parshin, A.; Morozov, V.; Snegirev, N.; Valkova, E.; Shikalenko, F. Advantages of Gamma-Radiometric and Spectrometric Low-Altitude Geophysical Surveys by Unmanned Aerial Systems with Small Scintillation Detectors. Appl. Sci. 2021, 11, 2247. [Google Scholar] [CrossRef]
- Kurvinen, K.; Smolander, P.; Pöllänen, R.; Kuukankorpi, S.; Kettunen, M.; Lyytinen, J. Design of a radiation surveillance unit for an unmanned aerial vehicle. J. Environ. Radioact. 2005, 81, 1–10. [Google Scholar] [CrossRef]
- Ikonen, E. Interference effects between independent gamma rays. Phys. Rev. Lett. 1992, 68, 2759. [Google Scholar] [CrossRef]
- Michalk, V.E.; McIntyre, J.A. Population of nuclear energy levels via photon-excited levels. Nucl. Phys. A 1969, 137, 115–128. [Google Scholar] [CrossRef]
- Molnár, A. Gamma Radiation Dose Measurement Using an Energy-Selective Method with the Help of a Drone. Sensors 2022, 22, 9062. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.; Lovas, I.; Domozi, Z. Practical Application Possibilities for 3D Models Using Low-resolution Thermal Images. Acta Polytech. 2021, 18, 199–212. [Google Scholar] [CrossRef]
- Frost, R.L. An infrared and Raman spectroscopic study of the uranyl micas. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1469–1480. [Google Scholar] [CrossRef]
- Cooper, M.W.; Ely, J.H.; Haas, D.A.; Hayes, J.C.; McIntyre, J.I.; Lidey, L.S.; Schrom, B.T. Absolute Efficiency Calibration of a Beta-Gamma Detector. IEEE Trans. Nucl. Sci. 2013, 60, 676–680. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, A.; Kiss, D.; Domozi, Z. Radiation Source Localization Using a Model-Based Approach. Sensors 2023, 23, 5983. https://doi.org/10.3390/s23135983
Molnár A, Kiss D, Domozi Z. Radiation Source Localization Using a Model-Based Approach. Sensors. 2023; 23(13):5983. https://doi.org/10.3390/s23135983
Chicago/Turabian StyleMolnár, András, Daniel Kiss, and Zsolt Domozi. 2023. "Radiation Source Localization Using a Model-Based Approach" Sensors 23, no. 13: 5983. https://doi.org/10.3390/s23135983
APA StyleMolnár, A., Kiss, D., & Domozi, Z. (2023). Radiation Source Localization Using a Model-Based Approach. Sensors, 23(13), 5983. https://doi.org/10.3390/s23135983