Computational Integral Imaging Reconstruction via Elemental Image Blending without Normalization
<p>Computational integral imaging system (<b>a</b>) pickup and (<b>b</b>) computational reconstruction.</p> "> Figure 2
<p>Processes of reconstructing a volume using the standard CIIR method.</p> "> Figure 3
<p>(<b>a</b>) 1D optical model of integral imaging and (<b>b</b>) its window signal model.</p> "> Figure 4
<p>(<b>a</b>) Illustration of the sum of nine SWFs in standard CIIR; (<b>b</b>) the results of normalization.</p> "> Figure 5
<p>(<b>a</b>) Illustration of the sum of nine SWFs in triangular CIIR; (<b>b</b>) the results of normalization.</p> "> Figure 6
<p>Diagram of the proposed CIIR method based on image blending: (<b>a</b>) represents the flowchart of the proposed method, and (<b>b</b>) describes the overlapping process; (<b>c</b>,<b>d</b>) illustrate the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> extraction process and the <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math> overwriting process, respectively.</p> "> Figure 7
<p>(<b>a</b>) Flowchart of the proposed method. (<b>b</b>) Horizontal overlapping for each row of EIA.</p> "> Figure 8
<p>Weight of alpha blending by overlapping, using a window.</p> "> Figure 9
<p>Alpha-blended signal in a shifted window function format.</p> "> Figure 10
<p>Optical experimental setup and acquired EIAs. (<b>a</b>) optical setup (<b>b</b>) EIA of the green car (<b>c</b>) EIA of the yellow car.</p> "> Figure 11
<p>Reconstructed images of the green car using (<b>a</b>) a rectangular window, (<b>b</b>) a triangular window, and (<b>c</b>) proposed method at <span class="html-italic">z</span> = <span class="html-italic">z</span><sub>0</sub> (20 mm) and <span class="html-italic">z</span> = <span class="html-italic">z</span><sub>0</sub> + 10 mm.</p> "> Figure 12
<p>Reconstructed images of the yellow car using (<b>a</b>) a rectangular window, (<b>b</b>) a triangular window, and (<b>c</b>) proposed method at <span class="html-italic">z</span> = <span class="html-italic">z</span><sub>0</sub> (20 mm) and <span class="html-italic">z</span> = <span class="html-italic">z</span><sub>0</sub> + 10 mm.</p> "> Figure 13
<p>Public light field data from the Heidelberg Collaboratory for Image Processing (HCI) used in the experiment. (<b>a</b>,<b>b</b>) EIA and its zoomed area of 9 × 9 elemental images from the 81 HCI image files; (<b>c</b>) a difference view of two neighboring elemental images.</p> "> Figure 14
<p>Reconstructed images of ‘bicycle’ data using (<b>a</b>) a rectangular window, (<b>b</b>) a triangular window, and (<b>c</b>) the proposed method.</p> "> Figure 15
<p>Time–memory scatterplot.</p> ">
Abstract
:1. Introduction
2. Conventional Computational Integral Imaging Reconstruction
3. Proposed CIIR Model via Elemental Image Blending
4. Experiment Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lippmann, G. La photographic integrale. CR Acad. Sci. 1908, 146, 446–451. [Google Scholar]
- Huang, Y.; Krishnan, G.; O’Connor, T.; Joshi, R.; Javidi, B. End-to-end integrated pipeline for underwater optical signal detection using 1D integral imaging capture with a convolutional neural network. Opt. Express 2023, 31, 1367–1385. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Javidi, B. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Opt. Lett. 2022, 27, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Javidi, B.; Hua, H.; Stern, A.; Martinez, M.; Matobe, O.; Wetzstein, G. Focus issue introduction: 3D image acquisition and display: Technology, perception and applications. Opt. Express 2022, 30, 4655–4658. [Google Scholar] [CrossRef] [PubMed]
- Javidi, B.; Carnicer, A.; Arai, J.; Fujii, T.; Hua, H.; Liao, H.; Martínez-Corral, M.; Pla, F.; Stern, A.; Waller, L.; et al. Roadmap on 3D integral imaging: Sensing, processing, and display. Opt. Express 2020, 28, 32266–32293. [Google Scholar] [CrossRef]
- Li, X.; Zhao, M.; Xing, Y.; Zhang, H.L.; Li, L.; Kim, S.T.; Wang, Q.H. Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging. Opt. Express 2018, 26, 11084–11099. [Google Scholar] [CrossRef]
- Shen, X.; Kim, H.S.; Satoru, K.; Markman, A.; Javidi, B. Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging. Opt. Express 2018, 26, 13938–13951. [Google Scholar] [CrossRef]
- Markman, A.; Shen, X.; Javidi, B. Three-dimensional object visualization and detection in low light illumination using integral imaging. Opt. Lett. 2017, 42, 3068–3071. [Google Scholar] [CrossRef]
- Llavador, A.; Sola-Pikabea, J.; Saavedra, G.; Javidi, B.; Martínez-Corral, M. Resolution improvements in integral microscopy with Fourier plane recording. Opt. Express 2016, 24, 20792–20798. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Yoo, H. Three-dimensional visualization of objects in scattering medium using integral imaging and spectral analysis. Opt. Lasers Eng. 2016, 77, 31–38. [Google Scholar] [CrossRef]
- Yoo, H.; Shin, D.H.; Cho, M. Improved depth extraction method of 3D objects using computational integral imaging reconstruction based on multiple windowing techniques. Opt. Lasers Eng. 2015, 66, 105–111. [Google Scholar] [CrossRef]
- Park, S.; Yeom, J.; Jeong, Y.; Chen, N.; Hong, J.Y.; Lee, B. Recent issues on integral imaging and its applications. J. Inf. Disp. 2014, 15, 37–46. [Google Scholar] [CrossRef]
- Xiao, X.; Javidi, B.; Martinez-Corral, M.; Stern, A. Advances in three-dimensional integral imaging: Sensing, display, and applications [Invited]. Appl. Opt. 2013, 52, 546–560. [Google Scholar] [CrossRef]
- Cho, M.; Daneshpanah, M.; Moon, I.; Javidi, B. Three-dimensional optical sensing and visualization using integral imaging. Proc. IEEE J. 2011, 99, 556–575. [Google Scholar]
- Okano, F.; Arai, J.; Hoshino, H.; Yuyama, I. Three-dimensional video system based on integral photography. Opt. Eng. 1999, 38, 1072–1077. [Google Scholar] [CrossRef]
- Shin, D.H.; Yoo, H. Image quality enhancement in 3D computational integral imaging by use of interpolation methods. Opt. Express 2007, 15, 12039–12049. [Google Scholar] [CrossRef]
- Hong, S.H.; Jang, J.S.; Javidi, B. Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Express 2004, 12, 483–491. [Google Scholar] [CrossRef]
- Arimoto, H.; Javidi, B. Integral three-dimensional imaging with digital reconstruction. Opt. Lett. 2001, 26, 157–159. [Google Scholar] [CrossRef]
- Chen, N.; Ren, Z.; Li, D.; Lam, E.Y.; Situ, G. Analysis of the noise in backprojection light field acquisition and its optimization. Appl. Opt. 2017, 56, F20–F26. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Lee, M.C.; Javidi, B.; Cho, M. Improved 3D integral imaging reconstruction with elemental image pixel rearrangement. J. Opt. 2018, 20, 025703. [Google Scholar] [CrossRef]
- Inoue, K.; Cho, M. Visual quality enhancement of integral imaging by using pixel rearrangement technique with convolution operator (CPERTS). Opt. Lasers Eng. 2018, 111, 206–210. [Google Scholar] [CrossRef]
- Cho, M.; Javidi, B. Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels. J. Disp. Technol. 2009, 5, 61–65. [Google Scholar] [CrossRef]
- Shin, D.H.; Yoo, H. Computational integral imaging reconstruction method of 3D images using pixel-to-pixel mapping and image interpolation. Opt. Commun. 2009, 282, 2760–2767. [Google Scholar] [CrossRef]
- Shin, D.H.; Yoo, H. Scale-variant magnification for computational integral imaging and its application to 3D object correlator. Opt. Express 2008, 16, 8855–8867. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Chou, P.Y.; Wu, J.Y.; Huang, C.T.; Huang, Y.P. Resolution-enhanced light field displays by recombining subpixels across elemental images. Opt. Lett. 2019, 44, 2438–2441. [Google Scholar] [CrossRef]
- Yoo, H.; Shin, D.H. Improved analysis on the signal property of computational integral imaging system. Opt. Express 2007, 15, 14107–14114. [Google Scholar] [CrossRef]
- Yoo, H. Artifact analysis and image enhancement in three-dimensional computational integral imaging using smooth windowing technique. Opt. Lett. 2011, 36, 2107–2109. [Google Scholar] [CrossRef]
- Ai, L.Y.; Kim, E.S. Refocusing-range and image-quality enhanced optical reconstruction of 3-D objects from integral images using a principal periodic δ-function array. Opt. Commun. 2018, 410, 871–883. [Google Scholar] [CrossRef]
- Yoo, H.; Jang, J.-Y. Intermediate elemental image reconstruction for refocused three-dimensional images in integral imaging by convolution with δ-function sequences. Opt. Lasers Eng. 2017, 97, 93–99. [Google Scholar] [CrossRef]
- Ai, L.Y.; Dong, X.B.; Jang, J.Y.; Kim, E.S. Optical full-depth refocusing of 3-D objects based on subdivided-elemental images and local periodic δ-functions in integral imaging. Opt. Express 2016, 24, 10359–10375. [Google Scholar] [CrossRef]
- Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.; Martínez-Corral, M. Free-depths reconstruction with synthetic impulse response in integral imaging. Opt. Express 2015, 23, 30127–30135. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.Y.; Shin, D.H.; Kim, E.S. Improved 3-D image reconstruction using the convolution property of periodic functions in curved integral-imaging. Opt. Lasers Eng. 2014, 54, 14–20. [Google Scholar] [CrossRef]
- Jang, J.Y.; Shin, D.H.; Kim, E.S. Optical three-dimensional refocusing from elemental images based on a sifting property of the periodic δ-function array in integral imaging. Opt. Express 2014, 22, 1533–1550. [Google Scholar] [CrossRef]
- Jang, J.Y.; Ser, J.I.; Cha, S.; Shin, S.H. Depth extraction by using the correlation of the periodic function with an elemental image in integral imaging. Appl. Opt. 2012, 51, 3279–3286. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, Q.H.; Ren, H.; Luo, L.; Deng, H.; Li, D.H. Optical arbitrary-depth refocusing for large-depth scene in integral imaging display based on reprojected parallax image. Opt. Commun. 2019, 433, 209–214. [Google Scholar] [CrossRef]
- Yan, Z.; Yan, X.; Jiang, X.; Ai, L. Computational integral imaging reconstruction of perspective and orthographic view images by common patches analysis. Optics Express 2017, 25, 21887–21900. [Google Scholar] [CrossRef]
- Cho, M.; Javidi, B. Free view reconstruction of three-dimensional integral imaging using tilted reconstruction planes with locally nonuniform magnification. J. Disp. Technol. 2009, 5, 345–349. [Google Scholar] [CrossRef]
- Cho, B.; Kopycki, P.; Martinez-Corral, M.; Cho, M. Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels. Opt. Lasers Eng. 2018, 111, 114–121. [Google Scholar] [CrossRef]
- Hwang, D.C.; Park, J.S.; Shin, D.H.; Kim, E.S. Depth-controlled reconstruction of 3D integral image using synthesized intermediate sub-images. Opt. Commun. 2008, 281, 5991–5997. [Google Scholar] [CrossRef]
- Yi, F.; Jeong, O.; Moon, I.; Javidi, B. Deep Learning Integral Imaging for Three-Dimensional Visualization, Object Detection, and Segmentation. Opt. Lasers Eng. 2021, 146, 106695. [Google Scholar] [CrossRef]
- 4D Light Field Dataset. Available online: https://lightfield-analysis.uni-konstanz.de/ (accessed on 28 May 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Cho, H.; Yoo, H. Computational Integral Imaging Reconstruction via Elemental Image Blending without Normalization. Sensors 2023, 23, 5468. https://doi.org/10.3390/s23125468
Lee E, Cho H, Yoo H. Computational Integral Imaging Reconstruction via Elemental Image Blending without Normalization. Sensors. 2023; 23(12):5468. https://doi.org/10.3390/s23125468
Chicago/Turabian StyleLee, Eunsu, Hyunji Cho, and Hoon Yoo. 2023. "Computational Integral Imaging Reconstruction via Elemental Image Blending without Normalization" Sensors 23, no. 12: 5468. https://doi.org/10.3390/s23125468